A New Measure for Transmission Irregularity Extent of Graphs

Document Type : Original paper

Author

Department of Mathematics, Kazerun Branch, Islamic Azad University, Kazerun, Iran

Abstract

The transmission of a vertex ${\varsigma}$ in a connected graph $\mathcal{J}$ is the sum of distances between ${\varsigma}$ and all other vertices of $\mathcal{J}$. A graph $\mathcal{J}$ is called transmission regular if all vertices have the same transmission. In this paper, we propose a new graph invariant for measuring the transmission irregularity extent of transmission irregular graphs. This invariant which we call the total transmission irregularity number (TTI number for short) is defined as the sum of the absolute values of the difference of the vertex transmissions over all unordered vertex pairs of a graph. We investigate some lower and upper bounds on the TTI number which reveal its connection to a number of already established indices. In addition, we compute the TTI number for various families of composite graphs and for some chemical graphs and nanostructures derived from them.

Keywords

Main Subjects


[1] H. Abdo, S. Brandt, and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014), no. 1, 201–206.
https://doi.org/10.46298/dmtcs.1263
[2] H. Abdo and D. Dimitrov, The total irregularity of graphs under graph operations, Miskolc Math. Notes 15 (2014), no. 1, 3–17.
https://doi.org/10.18514/MMN.2014.593
[3] H. Abdo, D. Dimitrov, and I. Gutman, Graph irregularity and its measures, Appl. Math. Comput. 357 (2019), 317–324.
https://doi.org/10.1016/j.amc.2019.04.013
[4] S. Adeel and A. A. Bhatti, On the extremal total irregularity index of $n$-vertex trees with fixed maximum degree, Commun. Comb. Optim. 6 (2021), no. 1, 113–121.
https://doi.org/10.22049/cco.2020.26965.1168
[5] A. Ali and T. Došlić, Mostar index: Results and perspectives, Appl. Math. Comput. 404 (2021), Article ID: 126245.
https://doi.org/10.1016/j.amc.2021.126245
[6] A. R. Ashrafi and A. Ghalavand, Note on non-regular graphs with minimal total irregularity, Appl. Math. Comput. 369 (2020), Article ID: 124891.
https://doi.org/10.1016/j.amc.2019.124891
[7] M. Azari, Further results on non-self-centrality measures of graphs, Filomat 32 (2018), no. 14, 5137–5148.
https://doi.org/10.2298/FIL1814137A
[8] M. Azari, On the Zagreb and eccentricity coindices of graph products, Iran. J. Math. Sci. Inf. 18 (2023), no. 1, 165–178.
http://doi.org/10.52547/ijmsi.18.1.165
[9] M. Azari and N. Dehgardi, Measuring peripherality extent in chemical graphs via graph operations, Int. J. Quantum Chem. 122 (2022), no. 3, Article ID: e26835.
https://doi.org/10.1002/qua.26835
[10] K. Balakrishnan, M. Changat, I. Peterin, S. Špacapan, P. Šparl, and A. R. Subhamathi, Strongly distance-balanced graphs and graph products, European J. Combin. 30 (2009), no. 5, 1048–1053.
https://doi.org/10.1016/j.ejc.2008.09.018
[11] L. Barrière, C. Dalfó, M. A. Fiol, and M. Mitjana, The generalized hierarchical product of graphs, Discrete Math. 309 (2009), no. 12, 3871–3881.
https://doi.org/10.1016/j.disc.2008.10.028
[12] N. Dehgardi and M. Azari, More on Mostar index, Appl. Math. E-Notes 20 (2020), 316–322.
[13] T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spužević, and I. Zubac, Mostar index, J. Math. Chem. 56 (2018), no. 10, 2995–3013.
https://doi.org/10.1007/s10910-018-0928-z
[14] R. C. Entringer, D. E. Jackson, and D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), no. 2, 283–296.
[15] R. Farooq and L. Mudusar, Non-self-centrality number of some molecular graphs, AIMS Math. 6 (2021), no. 8, 8342–8351.
https://doi.org/10.3934/math.2021483
[16] B. Furtula, Trinajstić index, Discrete Math. Lett. 9 (2022), 100–106. 
https://doi.org/10.47443/dml.2021.s216
[17] F. Gao, K. Xu, and T. Došlić, On the difference of Mostar index and irregularity of graphs, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 2, 905–926.
https://doi.org/10.1007/s40840-020-00991-y
[18] N. Ghanbari and S. Alikhani, Mostar index and edge Mostar index of polymers, Comp. Appl. Math. 40 (2021), no. 8, Article number: 260.
https://doi.org/10.1007/s40314-021-01652-x
[19] F. Hayat and B. Zhou, On Mostar index of trees with parameters, Filomat 33 (2019), no. 19, 6453–6458.
https://doi.org/10.2298/FIL1919453H
[20] G. Indulal and R. Balakrishnan, Distance spectrum of Indu-Bala product of graphs, AKCE Int. J. Graphs Comb. 13 (2016), no. 3, 230–234.
https://doi.org/10.1016/j.akcej.2016.06.012
[21] Š. Miklaviča and P. Šparl, Distance-unbalancedness of graphs, Appl. Math. Comput. 405 (2021), Article ID: 126233.
https://doi.org/10.1016/j.amc.2021.126233
[22] K. Pattabiraman, Product version of reciprocal degree distance of composite graphs, Commun. Comb. Optim. 3 (2018), no. 1, 25–35.
https://doi.org/10.22049/cco.2017.26018.1067
[23] C. Phanjoubam, S. M. Mawiong, and A. M. Buhphang, On Sombor coindex of graphs, Commun. Comb. Optim. 8 (2023), no. 3, 513–529.
http://doi.org/10.22049/CCO.2022.27751.1343
[24] R. Sharafdini and T. Réti, On the transmission-based graph topological indices, Kragujevac J. Math. 44 (2020), no. 1, 41–63.
[25] V. Sharma, R. Goswami, and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997), no. 2, 273–282.
https://doi.org/10.1021/ci960049h
[26] Z. Tang, H. Liu, H. Luo, and H. Deng, Comparison between the non-self-centrality number and the total irregularity of graphs, Appl. Math. Comput. 361 (2019), 332–337.
https://doi.org/10.1016/j.amc.2019.05.054
[27] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), no. 1, 17–20.
https://doi.org/10.1021/ja01193a005
[28] K. Xu, K. C. Das, and A. D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 12, 1477–1493.
https://doi.org/10.1007/s10114-016-5518-z
[29] K. Xu, X. Gu, and I. Gutman, Relations between total irregularity and non-self-centrality of graphs, Appl. Math. Comput. 337 (2018), 461–468.
https://doi.org/10.1016/j.amc.2018.05.058
[30] Y. Zhu, L. You, and J. Yang, The minimal total irregularity of some classes of graphs, Filomat 30 (2016), no. 5, 1203–1211.
https://doi.org/10.2298/FIL1605203Z