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Abstract: The transmission of a vertex ς in a connected graph J is the sum of

distances between ς and all other vertices of J . A graph J is called transmission

regular if all vertices have the same transmission. In this paper, we propose a new graph
invariant for measuring the transmission irregularity extent of transmission irregular

graphs. This invariant which we call the total transmission irregularity number (TTI
number for short) is defined as the sum of the absolute values of the difference of the

vertex transmissions over all unordered vertex pairs of a graph. We investigate some

lower and upper bounds on the TTI number which reveal its connection to a number
of already established indices. In addition, we compute the TTI number for various

families of composite graphs and for some chemical graphs and nanostructures derived

from them.
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1. Introduction

In this paper, all graphs are assumed to be simple, connected, and finite. Consider a

graph J with vertex set V (J ) and edge set E(J ). For ς ∈ V (J ), NJ (ς) denotes the

open neighborhood of the vertex ς in J and dJ (ς) denotes the degree of ς which is

the order of NJ (ς). For ι, ς ∈ V (J ), the distance dJ (ι, ς) is the length of a shortest

ι − ς path in J . The eccentricity εJ (ς) is the maximum amount of dJ (ι, ς) for any

ι ∈ V (J ). The maximum (minimum, resp.) amount of εJ (ς) for all ς ∈ V (J ) is

known as the diameter (radius, resp.) of J and shown by d(J ) (r(J ), resp.). For

ς ∈ V (J ), the transmission (also called distance sum or status) trJ (ς) is the sum of

dJ (ι, ς) over all ι ∈ V (J ). For each two distinct vertices ι, ς ∈ V (J ), nι(J ) denotes

the number of vertices of J lying closer to ι than to ς and nς(J ) indicates the number

of vertices of J lying closer to ς than to ι.
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A graph invariant (also called topological index) is a real number associated to a graph

that is invariant under isomorphism of graph.

A graph J in which dJ (ι) = dJ (ς) for every ι, ς ∈ V (J ) is called regular, otherwise

it is called irregular. For measuring irregularity of graphs, Abdo et al. [1] introduced

the total irregularity of J as

irrt(J ) =
∑

{ι,ς}⊆V (J )

∣∣dJ (ι)− dJ (ς)
∣∣ =

1

2

∑
ι,ς∈V (J )

∣∣dJ (ι)− dJ (ς)
∣∣,

where the first summation is over all unordered vertex pairs of J . We refer the reader

to [2–4, 6, 29, 30], for some recent researches on the total irregularity.

A graph J is called self-centered if εJ (ι) = εJ (ς) for every ι, ς ∈ V (J ), otherwise it is

called non-self-centered. In order to quantify the non-self-centrality extent of graphs,

Xu et al. [28] proposed the non-self-centrality number of J as

N(J ) =
∑

{ι,ς}⊆V (J )

∣∣εJ (ι)− εJ (ς)
∣∣ =

1

2

∑
ι,ς∈V (J )

∣∣εJ (ι)− εJ (ς)
∣∣.

See, for example, [7, 15, 26, 29] for some recent results on the non-self-centrality

number.

A graph J in which nι(J ) = nς(J ), for every edge ις ∈ E(J ) is said to be distance-

balanced, otherwise it is called distance-unbalanced. In 2018, Došlić et al. [13] proposed

a distance-based topological index namely Mostar index as a measure for the distance-

unbalancedness extent of graphs. It is expressed by

Mo(J ) =
∑

ις∈E(J )

∣∣nι(J )− nς(J )
∣∣,

in which the summation runs over all edges of J .

A graph J is said to be highly distance-balanced if for every pair of vertices ι, ς ∈
V (J ), nι(J ) = nς(J ). In recent years, some measures for quantifying the highly

distance-unbalancedness extent of graphs, i.e., the difference of graphs from being

highly distance-balanced have been proposed. One of them is the total Mostar index

(also called distance unbalancedness index) which was introduced by Miklaviča and

Šparl [21] in 2021 as

Mot(J ) =
∑

{ι,ς}⊆V (J )

∣∣nι(J )− nς(J )
∣∣ =

1

2

∑
ι,ς∈V (J )

∣∣nι(J )− nς(J )
∣∣.

Another measure was proposed by Furtula [16] in 2022 as

NT (J ) =
∑

{ι,ς}⊆V (J )

(
nι(J )− nς(J )

)2
.
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This index, due to the prominent rule of Nenad Trinajstić in chemical graph theory

and particularly in the progress of distance-based topological indices, was named

Trinajstić index. See, for example, [9, 12, 17–19] and specially the recent survey [5]

for more details on the Mostar index and total Mostar index.

A graph J is transmission regular if trJ (ι) = trJ (ς), for every vertices ι, ς ∈ V (J ). To

provide a quantitative measure of transmission irregularity in transmission irregular

graphs, i.e., the deviation of a graph from being transmission regular, a structural

invariant named as transmission irregularity was proposed by Sharafdini and Réti [24]

as

IrrTr(J ) =
∑

ις∈E(J )

|trJ (ι)− trJ (ς)|.

Due to the fact that trJ (ι)− trJ (ς) = nς(J )− nι(J ), for each edge ις ∈ E(J ) from

[10], one can easily verified that this invariant is equal to the Mostar index. Clearly,

IrrTr(J ) = 0 if and only if J is transmission regular.

Inspired by Abdo et al.’s definition for the total irregularity [1], Xu et al.’s definition

for the non-self-centrality number [28], and Miklaviča and Šparl’s definition for the

total Mostar index [21], we propose here a quantitative measure for the transmission

irregularity of graphs. This measure which we call the total transmission irregularity

number (TTI number for short) is defined for a graph J as

TTI(J ) =
∑

{ι,ς}⊆V (J )

∣∣trJ (ι)− trJ (ς)
∣∣ =

1

2

∑
ι,ς∈V (J )

|trJ (ι)− trJ (ς)|.

Evidently, the value of TTI(J ) equals zero if and only if J is transmission regular and

the higher values of the TTI number show the deviation of J from being transmission

regular. Indeed, the transmission irregularity IrrTr(J ) is the contribution of pairs of

adjacent vertices to the TTI number. Unlike the IrrTr(J ), TTI(J ) can be calculated

immediately from the sequence of the vertex transmissions (transmission sequence)

of J . The transmission sequence T (J ) of J is a monotonic non increasing sequence

of the vertex transmissions. Assume that T (J ) has exactly k distinct elements t1 >

t2 > · · · > tk with l1, l2, · · · , lk as their respective multiplicities. Then we can express

the TTI number of J as

TTI(J ) =
∑

1≤r<s≤k

lrls(tr − ts).

Remark 1. It should be noted that the total transmission irregularity number and the
total Mostar index are not equal in general. For example, for the path on 4 vertices, the
value of the TTI number is 8, while the value of the Mostar index is 6.

The aim of this research is to investigate certain mathematical properties of the TTI

number. We compute the values of the TTI number for some familiar graphs. More-

over, we give some bounds (upper and lower) on the TTI number which connects this
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invariant to some already established indices like the Wiener index [27], eccentric con-

nectivity index [25], total eccentricity, total irregularity, and transmission irregularity.

In addition, we study the TTI number for various families of composite graphs includ-

ing join, disjunction, symmetric difference, Indu-Bala product, lexicographic product,

generalized hierarchical product, Cartesian product, rooted product and corona prod-

uct and apply our formulae for computing the TTI number for some chemical graphs

and nanostructures.

2. Preliminaries

As usual, the notations Pν , Cν , Kν , and K̄ν are respectively used for the path,

cycle, complete graph, and empty graph on ν vertices. One can easily check that,

TTI(Cν) = TTI(Kν) = TTI(K̄ν) = 0.

Lemma 1. The TTI number of Pν is given by

TTI(Pν) =

{
ν2(ν2−4)

24
if ν is even,

(ν2−1)(ν2−3)
24

if ν is odd.
(2.1)

Proof. Label the vertices of Pν as 1, 2, · · · , ν, consecutively. For the ςth vertex of

Pν , we have

trPν (ς) =1 + 2 + ...+ (ς − 1) + 1 + 2 + ...+ (ν − ς)

=
ς(ς − 1)

2
+

(ν − ς)(ν − ς + 1)

2

=ς2 − ς(ν + 1) +

(
ν + 1

2

)
.

Then,

TTI(Pν) =
∑

1≤ι<ς≤ν

|trPν (ι)− trPν (ς)|

=
∑

1≤ι<ς≤ν

∣∣(ι2 − ι(ν + 1) +

(
ν + 1

2

)
)− (ς2 − ς(ν + 1) +

(
ν + 1

2

)
)
∣∣

=
∑

1≤ι<ς≤ν

|ι2 − ς2 − (ν + 1)(ι− ς)|

=

b ν2 c∑
ι=1

( ν+1−ι∑
ς=ι+1

[ι2 − ς2 − (ν + 1)(ι− ς)] +

ν∑
ς=ν+2−ι

[ς2 − ι2 + (ν + 1)(ι− ς)]
)

+

ν−1∑
ι=b ν2 c+1

ν∑
ς=ι+1

[ς2 − ι2 + (ν + 1)(ι− ς)].

Eq. (2.1) can be obtained after a direct calculation.
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Lemma 2. Consider a graph J with ν vertices. For any ς ∈ V (J ),

2(ν − 1)− dJ (ς) ≤ trJ (ς) ≤ dJ (ς) + (ν − 1− dJ (ς))εJ (ς).

The equality holds in both sides if and only if εJ (ς) ≤ 2.

Proof. To prove the left hand side inequality for ς ∈ V (J ), we obtain

trJ (ς) =
∑

ις∈E(J )

1 +
∑

ις /∈E(J )

dJ (ι, ς) ≥
∑

ις∈E(J )

1 +
∑

ις /∈E(J )

2

=dJ (ς) + 2(ν − 1− dJ (ς)) = 2(ν − 1)− dJ (ς).

The left hand side equality holds if and only if for each ις /∈ E(J ), dJ (ι, ς) = 2, from

which εJ (ς) ≤ 2. To prove the right hand side inequality, we have

trJ (ς) =
∑

ις∈E(J )

1 +
∑

ις /∈E(J )

dJ (ι, ς) ≤
∑

ις∈E(J )

1 +
∑

ις /∈E(J )

εJ (ς)

=dJ (ς) + (ν − 1− dJ (ς))εJ (ς).

The right hand side equality holds if and only if for each ις /∈ E(J ), εJ (ς) = 2, from

which εJ (ς) ≤ 2.

Lemma 3. [14] Let J be a graph of order ν and size µ. For any ς ∈ V (J ),

ν − 1 ≤ trJ (ς) ≤ 1

2
(ν − 1)(ν + 2)− µ.

The equality holds in left side if and only if εJ (ς) = 1 and the right bound is attained for
each µ, ν − 1 ≤ µ ≤

(
ν
2

)
.

3. Relation with other parameters

In this section, we give some bounds (upper and lower) for the TTI(J ), where J is

assumed to be a graph including ν vertices and µ edges. The given bounds are usually

in terms of some structural parameter and/or certain already established indices of

J .

Theorem 1. If J has diameter at most 2, then

TTI(J ) = irrt(J ).
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Proof. Since d(J ) ≤ 2, by Lemma 2, trJ (ς) = 2(ν − 1)− dJ (ς). Now by definition

of the TTI number, we get

TTI(J ) =
1

2

∑
ι,ς∈V (J )

|trJ (ι)− trJ (ς)|

=
1

2

∑
ι,ς∈V (J )

|(2(ν − 1)− dJ (ι))− (2(ν − 1)− dJ (ς))|

=
1

2

∑
ι,ς∈V (J )

|dJ (ι)− dJ (ς)| = irrt(J ),

from which the result follows.

Theorem 2. If J has diameter at most 2, then

Mot(J ) = irrt(J ).

Proof. Let ι, ς be a pair of distinct vertices in V (J ). If ι, ς are adjacent, then

the vertex ι and all vertices of J other than ς which are adjacent to ι but not to

ς are lying closer to ι than to ς. Hence, nι(J ) = dJ (ι) − |Nι(J ) ∩ Nς(J )| and

nς(J ) = dJ (ς)− |Nι(J ) ∩Nς(J )|. If ι, ς are not adjacent, then the vertex ι and all

vertices of J which are adjacent to ι but not to ς are lying closer to ι than to ς. Hence,

nι(J ) = 1+dJ (ι)−|Nι(J )∩Nς(J )| and nς(J ) = 1+dJ (ς)−|Nι(J )∩Nς(J )|. Now

by definition of the total Mostar index, we have

Mot(J ) =
∑

{ι,ς}⊆V (J )

∣∣nι(J )− nς(J )
∣∣

=
∑

ις∈E(J )

∣∣(dJ (ι)− |Nι(J ) ∩Nς(J )|
)
−
(
dJ (ς)− |Nι(J ) ∩Nς(J )|

)∣∣
+

∑
ις /∈E(J )

∣∣(1 + dJ (ι)− |Nι(J ) ∩Nς(J )|
)

−
(
1 + dJ (ς)− |Nι(J ) ∩Nς(J )|

)∣∣
=

∑
ις∈E(J )

∣∣dJ (ι)− dJ (ς)
∣∣+

∑
ις /∈E(J )

∣∣dJ (ι)− dJ (ς)
∣∣ = irrt(G).

This completes the proof.

Combining Theorems 1 and 2 and considering the facts that for any graph J ,

Mo(J ) = IrrTr(J ) and for any graph J with d(J ) ≤ 2, irrt(J ) = Mo(J ) from

[12], we arrive at:

Corollary 1. If J has diameter at most 2, then

TTI(J ) = Mot(J ) = IrrTr(J ).
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The Wiener number [27], the first and the most famous distance-based invariant, is

formulated for a graph J as

W (J ) =
∑

{ι,ς}⊆V (J )

dJ (ι, ς) =
1

2

∑
ς∈V (J )

trJ (ς).

Here, a sharp upper bound on the TTI number in terms of the Wiener number is

given.

Theorem 3.
TTI(J ) ≤ νW (J )− ν2(ν − 1) + νµ, (3.1)

with equality if and only if d(J ) ≤ 2.

Proof. By Lemma 2,

TTI(J ) =
1

2

∑
ι,ς∈V (J )

|trJ (ι)− trJ (ς)|

≤1

2

∑
ι,ς∈V (J )

(
trJ (ι)− (2(ν − 1)− dJ (ς))

)
=

1

2
(2νW (J )− 2ν2(ν − 1) + 2νµ)

=νW (J )− ν2(ν − 1) + νµ,

from which Eq. (3.1) follows. By Lemma 2 the equality happens in Eq. (3.1) if and

only if εJ (ς) ≤ 2 for all ς ∈ V (J ), from which d(J ) ≤ 2.

The eccentric connectivity index ξc(J ) [25] and total eccentricity ζ(J ) are among the

most famous distance-based graph invariants of J which are respectively defined as

ξc(J ) =
∑

ς∈V (J )

dJ (ς)εJ (ς), ζ(J ) =
∑

ς∈V (J )

εJ (ς).

In what follows, a sharp upper bound on the TTI number based on the Wiener

number, eccentric connectivity index, and total eccentricity is presented.

Theorem 4.

TTI(J ) ≤

(
ν

2

)
ζ(J )− ν

2
ξc(J )− νW (J ) + νµ, (3.2)

with equality if and only if d(J ) ≤ 2.



8 A new measure for transmission irregularity extent of graphs

Proof. By Lemma 2,

TTI(J ) =
1

2

∑
ι,ς∈V (J )

|trJ (ι)− trJ (ς)|

≤1

2

∑
ι,ς∈V (J )

[(
dJ (ι) + (ν − 1− dJ (ι))εJ (ι)

)
− trJ (ς)

]
=

1

2

(
2νµ+ ν(ν − 1)ζ(J )− νξc(J )− 2νW (J )

)
,

from which Eq. (3.2) follows and the equality holds if and only if d(J ) ≤ 2.

Theorem 5.

TTI(J ) ≤
(1

2
(ν − 1)(ν + 2)− µ

)(ν
2

)
− νW (J ). (3.3)

The bound is attained for each µ, ν − 1 ≤ µ ≤
(
ν
2

)
.

Proof. By Lemma 3,

TTI(J ) =
∑

{ι,ς}⊆V (J )

|trJ (ι)− trJ (ς)|

≤
∑

{ι,ς}⊆V (J )

(1

2
(ν − 1)(ν + 2)− µ− trJ (ς)

)
=
(1

2
(ν − 1)(ν + 2)− µ

)(ν
2

)
− νW (J ),

from which Eq. (3.3) follows. By Lemma 3 the bound is attained for each µ, ν − 1 ≤
µ ≤

(
ν
2

)
.

Theorem 6.

TTI(J ) ≤

(
ν

2

)((ν
2

)
− µ

)
, (3.4)

with equality if and only if J ∼= Kν .

Proof. By Lemma 3,

TTI(J ) =
∑

{ι,ς}⊆V (J )

|trJ (ι)− trJ (ς)|

≤
∑

{ι,ς}⊆V (J )

(1

2
(ν − 1)(ν + 2)− µ− (ν − 1)

)
=

∑
{ι,ς}⊆V (J )

(

(
ν

2

)
− µ),
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from which Eq. (3.4) follows. The equality holds in Eq. (3.4), if and only if for

each {ι, ς} ⊆ V (J ), trJ (ι) = 1
2 (ν − 1)(ν + 2) − µ and trJ (ς) = ν − 1, from which

J ∼= Kν .

Applying Theorem 6, we can get a Nordhaus-Gaddum type result for the TTI number.

Corollary 2.

TTI(J ) + TTI(J̄ ) <

(
ν

2

)2

.

We introduce W (2)(J ) as

W (2)(J ) =
1

2

∑
ς∈V (J )

trJ (ς)2.

In what follows, a sharp upper bound on the TTI(J ) in terms of W (J ) and W (2)(J )

is obtained.

Theorem 7.

TTI(J ) ≤

√√√√(ν
2

)(
2νW (2)(J )− 4W (J )2

)
, (3.5)

with equality if and only if J is a transmission regular graph.

Proof. Applying Cauchy–Schwarz inequality yields:

TTI(J )2 =
( ∑
{ι,ς}⊆V (J )

|trJ (ι)− trJ (ς)|
)2

≤
(
ν

2

) ∑
{ι,ς}⊆V (J )

|trJ (ι)− trJ (ς)|2

=
1

2

(
ν

2

) ∑
ι,ς∈V (J )

(
trJ (ι)2 + trJ (ς)2 − 2trJ (ι)trJ (ς)

)
=

(
ν

2

)(
2νW (2)(J )− 4W (J )

2)
,

from which Eq. (3.5) follows. The equality holds in (3.5), if and only if for each

{ι, ς} ⊆ V (J ), |trJ (ι) − trJ (ς)| is constant, from which we deduce that J is a

transmission regular graph.

Here, we obtain a lower bound on the TTI number of a non-complete graph J based

on the order, size, and Wiener index of J .
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Theorem 8. If J is non-complete, then

TTI(J ) >
2νW (2)(J )− 4W (J )2(

ν
2

)
− µ

. (3.6)

Proof. By Lemma 3, for every {ι, ς} ⊆ V (J ),

|trJ (ι)− trJ (ς)| ≤ 1

2
(ν − 1)(ν + 2)−m− (ν − 1) =

(
ν

2

)
− µ.

Hence

2νW (2)(J )− 4W (J )
2

=
∑

{ι,ς}⊆V (J )

|trJ (ι)− trJ (ς)|2

<(

(
ν

2

)
− µ)

∑
{ι,ς}⊆V (J )

|trJ (ι)− trJ (ς)|

=(

(
ν

2

)
− µ)TTI(J ),

from which Eq. (3.6) is concluded. The inequality in (3.6) is strict since J is a

non-complete graph.

4. Composite graphs

In this section, we study the TTI number for various families of composite graphs. We

denote the components of each composite graphs by J1 and J2. The order and size

of Jr are depicted by νr and µr, respectively, r = 1, 2. For composite graphs three

or more components, the values of subscripts alter correspondingly. See, for example,

[2, 7–9, 22, 23] for more information on graph invariants of composite graphs.

The join or sum J1∇J2 is a graph with V (J1∇J2) = V (J1)∪V (J2) and E(J1∇J2) =

E(J1) ∪ E(J2) ∪ {ς1ς2 : ς1 ∈ V (J1), ς2 ∈ V (J2)}.
We first consider the join of the empty graph K̄1 with an arbitrary graph J which is

called the suspension of J .

Theorem 9. Let J be a graph of order ν and size µ. Then

TTI(K̄1∇J ) = irrt(J ) + ν(ν − 1)− 2µ. (4.1)



M. Azari 11

Proof. As the diameter of K̄1∇J is at most 2, Theorem 1 implies

TTI(K̄1∇J ) =irrt(K̄1∇J ) =
∑

{ι,ς}⊆V (K̄1∇J )

∣∣dK̄1∇J (ι)− dK̄1∇J (ς)
∣∣

=
∑

{ι,ς}⊆V (J )

∣∣(dJ (ι) + 1)− (dJ (ς) + 1)
∣∣+

∑
ς∈V (J )

∣∣ν − (dJ (ς) + 1)
∣∣

=
∑

{ι,ς}⊆V (J )

∣∣dJ (ι)− dJ (ς)
∣∣+

∑
ς∈V (J )

(
ν − 1− dJ (ς)

)
=irrt(J ) + ν(ν − 1)− 2µ,

from which Eq. (4.1) follows.

Star graph Sν , Fan graph Fν , wheel graph Wν , and Windmill graph D
(µ)
ν are suspension

of K̄ν−1, Pν−1, Cν−1, and mKν−1, respectively, where µKν−1 is the union of µ copies

of Kν−1. Applying Theorem 9 yields:

Corollary 3. For ν ≥ 4,

(i) TTI(Sν) = (ν − 1)(ν − 2);

(ii) TTI(Fν) = ν(ν − 3);

(iii) TTI(Wν) = (ν − 1)(ν − 4);

(iv) TTI(D
(µ)
ν ) = µ(µ− 1)(ν − 1)2.

By Theorem 1, for the ν-gonal µ-cone graph Cν∇K̄µ, we have

Corollary 4.
TTI(Cν∇K̄µ) = νµ|µ− ν + 2|.

Now, we consider the join of two arbitrary graphs. Note that J1∇J2 is of diameter

at most 2. Now by Theorem 1 and the upper bound presented for irrt(J1∇J2) in

Theorem 2 of [2], we get the following corollary.

Theorem 10. If ν1 ≥ ν2, then

TTI(J1∇J2) ≤ irrt(J1) + irrt(J2) + ν2(ν1 − 1)(ν1 − 2).

In addition, the bound is best possible.

In Theorem 10, if J1 is any tree of order ν1 and J2 is complete graph of order ν2,

then the equality holds and hence the presented bound is best possible.

The complete p-partite graph Kν1,ν2,...,νp is a join of K̄ν1 , K̄ν2 , · · · , K̄νp and according

to Theorem 1, we get:
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Corollary 5.

TTI(Kν1,ν2,...,νp) =

p−1∑
r=1

p∑
s=r+1

νrνs|νs − νr|.

The disjunction J1∨J2 is a graph with V (J1∨J2) = V (J1)×V (J2) and E(J1∨J2) =

{(ι1, ι2)(ς1, ς2) : ι1ς1 ∈ E(J1) or ι2ς2 ∈ E(J2)}. Due to the fact that, J1 ∨ J2 has

diameter at most 2, applying Theorem 1 and the upper bound for irrt(J1 ∨ J2)

obtained in Theorem 8 of [2] yield:

Theorem 11.

TTI(J1 ∨ J2) ≤ν2
(
ν2

2 + 2µ2

)
irrt(J1) + ν1

(
ν1

2 + 2µ1

)
irrt(J2).

The symmetric difference J1 ⊕J2 is a graph with V (J1 ⊕J2) = V (J1)× V (J2) and

E(J1 ⊕ J2) = {(ι1, ι2)(ς1, ς2) : ι1ς1 ∈ E(J1) or ι2ς2 ∈ E(J2),but not both}. As the

diameter of J1⊕J2 equals 2, Theorem 1 and the upper bound for irr(J1⊕J2) given

in Theorem 9 of [2] imply:

Theorem 12.

TTI(J1 ⊕ J2) ≤ν2
(
ν2

2 + 4µ2

)
irrt(J1) + ν1

(
ν1

2 + 4µ1

)
irrt(J2).

The Indu-Bala product J1♦J2 is a graph made from two disjoint copies of J1∇J2 by

joining each vertex in one copy of J2 to its corresponding vertex in another copy of

J2 (see [20]).

Theorem 13. If ν1 ≥ ν2 and J1 is not trivial, then

TTI(J1♦J2) ≤ 8irrt(J1) + 16irrt(J2) + 8ν2(ν21 − ν1 + 1). (4.2)

In addition, the bound is best possible.

Proof. If ς ∈ V (J1), then

trJ1♦J2
(ς) =

∑
ις∈E(J1)

1 +
∑

ις /∈E(J1)

2 +
∑

ς∈V (J2)

(1 + 2) +
∑

ς∈V (J1)

3

=dJ1
(ς) + 2

(
ν1 − 1− dJ1

(ς)
)

+ 3ν2 + 3ν1 = 5ν1 + 3ν2 − dJ1
(ς)− 2,

and if ς ∈ V (J2), then

trJ1♦J2
(ς) =

∑
ις∈E(J2)

(1 + 2) +
∑

ις /∈E(J2)

(2 + 3) + 1 +
∑

ι∈V (J1)

(1 + 2)

=3dJ2
(ς) + 5

(
ν2 − 1− dJ2

(ς)
)

+ 1 + 3ν1 = 3ν1 + 5ν2 − 2dJ2
(ς)− 4.
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Now from definition of the TTI number, we have

TTI(J1♦J2) =
∑

{ι,ς}⊆V (J1♦J2)

∣∣trJ1♦J2
(ι)− trJ1♦J2

(ς)
∣∣

=8
∑

{ι,ς}⊆V (J1)

∣∣trJ1♦J2
(ι)− trJ1♦J2

(ς)
∣∣

+ 8
∑

{ι,ς}⊆V (J2)

∣∣trJ1♦J2
(ι)− trJ1♦J2

(ς)
∣∣

+ 4
∑

ι∈V (J1)

∑
ς∈V (J2)

∣∣trJ1♦J2
(ι)− trJ1♦J2

(ς)
∣∣

=8
∑

{ι,ς}⊆V (J1)

∣∣(5ν1 + 3ν2 − dJ1
(ι)− 2

)
−
(
5ν1 + 3ν2 − dJ1

(ς)− 2
)∣∣

+ 8
∑

{ι,ς}⊆V (J2)

∣∣(3ν1 + 5ν2 − 2dJ2
(ι)− 4

)
−
(
3ν1 + 5ν2 − 2dJ2

(ς)− 4
)∣∣

+ 4
∑

ι∈V (J1)

∑
ς∈V (J2)

∣∣(5ν1 + 3ν2 − dJ1(ι)− 2
)

−
(
3ν1 + 5ν2 − 2dJ2(ς)− 4

)∣∣
=8

∑
{ι,ς}⊆V (J1)

∣∣dJ1
(ς)− dJ1

(ι)
∣∣+ 16

∑
{ι,ς}⊆V (J2)

∣∣dJ2
(ς)− dJ2

(ι)
∣∣

+ 4
∑

ι∈V (J1)

∑
ς∈V (J2)

∣∣2ν1 − 2ν2 − dJ1
(ι) + 2dJ2

(ς) + 2
∣∣

=8irrt(J1) + 16irrt(J2)

+ 4
∑

ι∈V (J1)

∑
ς∈V (J2)

∣∣2ν1 − 2ν2 − dJ1(ι) + 2dJ2(ς) + 2
∣∣.

Evidently, dJ1(ι) < ν1 and dJ2(ς) < ν2 and under the constrain ν1 ≥ ν2, the double

sum
∑
ι∈V (J1)

∑
ς∈V (J2)

∣∣2ν1 − 2ν2 − dJ1
(ι) + 2dJ2

(ς) + 2
∣∣ is maximum whenever J1

has minimum sum of vertex degrees, i.e., J1
∼= Tν1 , where Tν1 is a tree on ν1 vertices

and J2 has maximum sum of vertex degrees, i.e., J2
∼= Kν2 . Hence

∑
ι∈V (J1)

∑
ς∈V (J2)

∣∣2ν1 − 2ν2 − dJ1
(ι) + 2dJ2

(ς) + 2
∣∣

≤
∑

ι∈V (Tν1 )

∑
ς∈V (Kν2 )

∣∣2ν1 − 2ν2 − dTν1 (ι) + 2dKν2 (ς) + 2
∣∣

=
∑

ι∈V (Tν1 )

∑
ς∈V (Kν2 )

∣∣2ν1 − 2ν2 − dTν1 (ι) + 2(ν2 − 1) + 2
∣∣
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=
∑

ι∈V (Tν1 )

∑
ς∈V (Kν2 )

∣∣2ν1 − dTν1 (ι)
∣∣

=ν2

∑
ι∈V (Tν1 )

(
2ν1 − dTν1 (ι)

)
=2ν2

1ν2 − 2ν2(ν1 − 1) = 2ν2(ν2
1 − ν1 + 1),

from which

TTI(J1♦J2) ≤ 8irrt(J1) + 16irrt(J2) + 8ν2(ν2
1 − ν1 + 1).

If J1 is any tree of order ν1 and J2 is complete graph of order ν2, then the equality

in (4.2) holds. Hence the bound in (4.2) is best possible.

The lexicographic product (also called composition) of J1 and J2, denoted by J1[J2],

is a graph with V (J1[J2]) = V (J1)× V (J2) and E(J1[J2]) = {(ι1, ι2)(ς1, ς2) : ι1ς1 ∈
E(J1), ι2, ς2 ∈ V (J2)} ∪ {(ι1, ι2)(ς1, ς2) : ι1 = ς1 ∈ V (J1), ι2ς2 ∈ E(J2)}.

Theorem 14.
TTI(J1[J2]) ≤ ν23TTI(J1) + ν1

2Irrt(J2),

with equality holds if and only if J1 is transmission regular or J2 is regular.

Proof. For (ι1, ι2) ∈ V (J1[J2]),

trJ1[J2]((ι1, ι2)) =
∑

ι2ς2∈E(J2)

1 +
∑

ι2ς2 /∈E(J2)

2 +
∑

ς1∈V (J1)\{ι1}

∑
ς2∈V (J2)

dJ1(ι1, ς1)

=dJ2(ι2) + 2(ν2 − 1− dJ2(ι2)) + ν2trJ1(ι1)

=ν2trJ1
(ι1) + 2(ν2 − 1)− dJ2

(ι2).

Then from the definition of the TTI number, we get

TTI(J1[J2]) =
1

2

∑
(ι1,ι2),(ς1,ς2)∈V (J1[J2])

∣∣trJ1[J2]((ι1, ι2))− trJ1[J2]((ς1, ς2))
∣∣

=
1

2

∑
ι1,ς1∈V (J1)

∑
ι2,ς2∈V (J2)

∣∣(ν2trJ1
(ι1) + 2(ν2 − 1)− dJ2

(ι2)
)

−
(
ν2trJ1

(ς1) + 2(ν2 − 1)− dJ2
(ς2)

)∣∣
=

1

2

∑
ι1,ς1∈V (J1)

∑
ι2,ς2∈V (J2)

∣∣ν2

(
trJ1(ι1)− trJ1(ς1)

)
+
(
dJ2(ς2)− dJ2(ι2)

)∣∣.
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Using triangle inequality, we obtain

TTI(J1[J2]) ≤1

2

∑
ι1,ς1∈V (J1)

∑
ι2,ς2∈V (J2)

[
ν2

∣∣trJ1
(ι1)− trJ1

(ς1)
∣∣+
∣∣dJ2

(ς2)− dJ2
(ι2)
∣∣]

=ν2
3TTI(J1) + ν1

2Irrt(J2),

in which the equality occurs if and only if J1 is transmission regular or J2 is regular.

According to Theorem 14, for the open fence graph Pν [P2] and closed fence graph

Cν [P2], we reach to:

Corollary 6.

TTI(Pν [P2]) =

{
ν2(ν2−4)

3
if ν is even,

(ν2−1)(ν2−3)
3

if ν is odd,
TTI(Cν [P2]) = 0.

The generalized hierarchical product J1(S) u J2 is a graph with V (J1(S) u J2) =

V (J1) × V (J2) and E(J1(S) u J2) = {(ι1, ι2)(ς1, ς2) : ι1 = ς1 ∈ S, ι2ς2 ∈ E(J2)} ∪
{(ι1, ι2)(ς1, ς2) : ι1ς1 ∈ E(J1), ι2 = ς2 ∈ V (J2)}, , where S is a nonempty subset of

V (J1) (see [11]).

For ι1, ς1 ∈ V (J1), the distance dJ1(S)(ι1, ς1) between ι1 and ς1 through S is the length

of any shortest ι1 − ς1 path in J1 including some vertex s ∈ S (s can be ι1 or ς1).

Obviously, if ι1 ∈ S or ς ∈ S, then dJ1(S)(ι1, ς1) = dJ1(ι1, ς1). As an instanse, the zig-

zag polyhex nanotube TUC6[2ν, 2] is the generalized hierarchical product C2ν(S)uP2,

where S = {ι1, ι3, ..., ι2ν−1} and V (C2ν) = {ι1, ι2, ..., ι2ν}.
For the sake of simplicity, we define

TTI(J1(S)) =
∑

{ι1,ς1}⊆V (J1)

∣∣trJ1(S)(ι1)− trJ1(S)(ς1)
∣∣,

where trJ1(S)(ς1) =
∑
ι1∈V (J1) dJ1(S)(ι1, ς1). We say J1(S) is transmission regular if

for every ι1, ς1 ∈ V (J1), trJ1(S)(ι1) = trJ1(S)(ς1).

Theorem 15. Let S be a nonempty subset of V (J1). Then

TTI(J1(S) u J2) ≤ ν22TTI(J1) + ν2
2(ν2 − 1)TTI(J1(S)) + ν1

3TTI(J2),

with equality if and only if J1 and J1(S) are transmission regular or J2 is transmission
regular and for every ι1, ς1 ∈ V (J1) with trJ1(S)(ι1) < trJ1(S)(ς1), we have trJ1(ι1) ≤
trJ1(ς1).
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Proof. For (ι1, ι2) ∈ V (J1(S) u J2),

trJ1(S)uJ2
((ι1, ι2))

=
∑

ς1∈V (J1)

dJ1
(ι1, ς1) +

∑
ς1∈V (J1)

∑
ς2∈V (J2)\{ι2}

(
dJ1(S)(ι1, ς1) + dJ2

(ι2, ς2)
)

=trJ1
(ι1) + (ν2 − 1)trJ1(S)(ι1) + ν1trJ2

(ι2).

Now by definition of the TTI number, we obtain

TTI(J1(S) u J2)

=
1

2

∑
(ι1,ι2),(ς1,ς2)∈V (J1(S)uJ2)

∣∣trJ1(S)uJ2
((ι1, ι2))− trJ1(S)uJ2

((ς1, ς2))
∣∣

=
1

2

∑
ι1,ς1∈V (J1)

∑
ι2,ς2∈V (J2)

∣∣(trJ1
(ι1) + (ν2 − 1)trJ1(S)(ι1) + ν1trJ2

(ι2)
)

−
(
trJ1

(ς1) + (ν2 − 1)trJ1(S)(ς1) + ν1trJ2
(ς2)

)∣∣
=

1

2

∑
ι1,ς1∈V (J1)

∑
ι2,ς2∈V (J2)

∣∣(trJ1
(ι1)− trJ1

(ς1)
)

+ (ν2 − 1)
(
trJ1(S)(ι1)− trJ1(S)(ς1)

)
+ ν1

(
trJ2

(ι2)− trJ2
(ς2)

)∣∣.
According to triangle inequality,

TTI(J1(S) u J2)

≤1

2

∑
ι1,ς1∈V (J1)

∑
ι2,ς2∈V (J2)

[∣∣trJ1(ι1)− trJ1(ς1)
∣∣+ (ν2 − 1)

∣∣trJ1(S)(ι1)− trJ1(S)(ς1)
∣∣

+ ν1

∣∣trJ2(ι2)− trJ2(ς2)
∣∣]

=ν2
2TTI(J1) + ν2

2(ν2 − 1)TTI(J1(S)) + ν1
3TTI(J2),

with equality if and only if J1 and J1(S) are transmission regular or J2 is transmission

regular and for every ι1, ς1 ∈ V (J1) with trJ1(S)(ι1) < trJ1(S)(ς1), we have trJ1
(ι1) ≤

trJ1
(ς1).

The Cartesian product J1 × J2, is a graph with V (J1 × J2) = V (J1) × V (J2) and

E(J1 × J2) = {(ι1, ι2)(ς1, ς2) : ι1 = ς1 ∈ V (J1), ι2ς2 ∈ E(J2)} ∪ {(ι1, ι2)(ς1, ς2) :

ι1ς1 ∈ E(J1), ι2 = ς2 ∈ V (J2)}. One can extend the definition to more than two

graphs, straightforwardly. Evidently, if S = V (J1), then J1 × J2
∼= J1(S) u J2 and

by Theorem 15 we reach to:

Theorem 16.
TTI(J1 × J2) ≤ ν23TTI(J1) + ν1

3TTI(J2), (4.3)

with equality occurs if and only if J1 or J2 is transmission regular.
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The graphs Pν × Cµ and Cν × Cµ are called C4−nanotube and C4−nanotorus and

denoted by TUC4(µ, ν) and TC4(µ, ν), respectively and the graph Kν ×Kµ is known

as Rook’s graph. Using Theorem 16, we arrive at:

Corollary 7.

TTI(TUC4(µ, ν)) =

{
µ3ν2(ν2−4)

24
if ν is even,

µ3(ν2−1)(ν2−3)
24

if ν is odd,

TTI(TC4(µ, ν)) =TTI(Kν ×Kµ) = 0.

By an inductive argument, we can extend Eq. (4.3) to a Cartesian product of any

desired number of graphs.

Corollary 8.

TTI(J1 × J2 × ...× Jk) ≤ ν13ν23 · · · νk3
k∑
r=1

TTI(Jι)
νr3

,

with equality happens if and only if at most one of the components J1,J2, · · · ,Jk is trans-
mission irregular.

The Hamming graph Hν1,ν2,...,νr can be considered as the Cartesian product of Kν1 ,

Kν2 , · · · ,Kνr and by Corollary 8, we arrive at:

Corollary 9.
TTI(Hν1,ν2,...,νr ) = 0.

By considering J2 as a graph rooted at ρ ∈ V (J2), the rooted product or cluster

J1{J2} is a graph constructed from a copy of J1 and ν1 copies of J2 by identifying

the rth vertex of J1 with the root vertex ρ in the rth copy of J2, for r = 1, 2, . . ., ν1.

If S = {ρ} ⊆ V (J2), then J1{J2} ∼= J2(S) u J1 and Theorem 15 yields:

Theorem 17. Let J1 be non-trivial and J2 be rooted at ρ ∈ V (J2). Then

TTI(J1{J2}) ≤ ν23TTI(J1) + ν1
2TTI(J2) + ν1

2ν2(ν1 − 1)TTI(ρ|J2), (4.4)

where TTI(ρ|J2) =
∑
{ι,ς}⊆V (J2)

∣∣dJ2(ι, ρ) − dJ2(ς, ρ)
∣∣. The equality happens if and only

if J1 is transmission regular and for every ι, ς ∈ V (J2) with dJ2(ι, ρ) < dJ2(ς, ρ), we have
trJ2(ι) ≤ trJ2(ς).
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The corona product J1 ◦J2 is a graph made from J1 and ν1 copies of J2 with V (J1 ◦
J2) = V (J1) ∪ {V (J2ι) : ι ∈ V (J1)} and E(J1 ◦ J2) = E(J1) ∪ {E(J2ι) : ι ∈
V (J1)} ∪ {ις : ι ∈ V (J1), ς ∈ V (J2ι)}, where J2ι is a copy of J2 correspond to

ι ∈ V (J1). One can easily see that J1 ◦J2
∼= J1{K̄1∇J2}, where K̄1∇J2 is supposed

to be rooted at the vertex of K̄1. Now Theorem 17 yields:

Theorem 18. Let J1 be a non-trivial graph. Then

TTI(J1 ◦ J2) ≤(ν2 + 1)3TTI(J1) + ν1
2irrt(J2) + ν1

2(ν1ν2
2 + ν1ν2 − 2ν2 − 2µ2), (4.5)

with equality happens if and only if J1 is transmission regular.

The corona product of K2 and a given graph J is named the bottleneck graph of J .

According to Theorem 18, we get:

Corollary 10. For a given graph J with ν vertices and µ edges,

TTI(K2 ◦ J ) = 4irrt(J ) + 8(ν2 − µ).

In particular, for the bottleneck graph of path and cycle, we obtain:

Corollary 11. For ν ≥ 3, TTI(K2 ◦ Pν) = 8(ν2 − 1), TTI(K2 ◦ Cν) = 8ν(ν − 1).

The corona product of a graph J and Kt is called the t-thorny graph of J and denoted

by J t. Using Theorem 18, we arrive at:

Corollary 12. For a non-trivial graph J with ν vertices,

TTI(J t) ≤ (t+ 1)3TTI(J ) + ν2t(νt+ ν − 2),

with equality occurs if and only if J is transmission regular.

In particular, the TTI number of the t−thorny cycle is given by:

Corollary 13. TTI(Ctν) = ν2t(νt+ ν − 2).

Moreover, Theorem 18 implies:

Corollary 14. For a given graph J with n vertices,

TTI(J ◦ tK2) ≤ (2t+ 1)3TTI(J1) + ν2t(4νt+ 2ν − 6),

in which t is a positive integer and the equality happens if and only if J is transmission
regular.
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In particular, for the flower graph with ν petals, we obtain:

Corollary 15. TTI(Cν ◦K2) = 6ν2(ν − 1).

5. Conclusion

This paper is concerned with the introduction of a new graph invariant namely

the total transmission irregularity (TTI) number as an indicator for measuring the

transmission irregularity extent in transmission irregular graphs. We investigated

some mathematical properties of the new invariant such as computing its value

for some families of graphs, giving lower and upper bounds on the invariant and

its relation with some already established indices, and studying it for various

families of composite graphs and for some structures of mathematico-chemical

interest. Investigating other properties of the TTI number such as its extremal

values over various graph classes such as trees and c-cyclic graphs with given

parameter, its potential applications in chemistry and other scientific fields and

computing its values for various families of chemical graphs and nano-structures

are suggested for further studies. In particular, it would be interesting to find a

general relation between the TTI number and total Mostar index of connected graphs.
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