An element $i=(v,e)$ of a graph $G$ is called an incidence of $G$, if $v\in V(G)$, $e\in E(G)$ and $v\in e$. The simultaneous coloring of vertices and incidences of a graph is coloring the vertices and incidences of the graph properly at the same time such that any two adjacent or incident elements receive distinct colors. In this paper, we investigate the simultaneous coloring of vertices and incidences of hypercubes.
[2] P. Gregor, B. Lužar, and R. Soták, On incidence coloring conjecture in cartesian products of graphs, Discrete Appl. Math. 213 (2016), 93–100. https://doi.org/10.1016/j.dam.2016.04.030
[3] M. Mozafari-Nia and M. Nejad Iradmusa, A note on coloring of $3/3$-power of subquartic graphs, Australas. J. Combin. 79 (2021), no. 3, 454–460.
[4] M. Mozafari-Nia and M. Nejad Iradmusa, Simultaneous coloring of vertices and incidences of graphs, Australas. J. Combin. 85 (2023), no. 3, 287–307.
[5] M. Mozafari-Nia and M. Nejad Iradmusa, Simultaneous coloring of vertices and incidences of outerplanar graphs, Electron. J. Graph Theory Appl. 11 (2023), no. 1, 245–262. https://dx.doi.org/10.5614/ejgta.2023.11.1.20
[7] M. Nejad Iradmusa, A short proof of 7-colorability of $3/3$-power of sub-cubic graphs, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 1, 225–226. https://doi.org/10.1007/s40995-020-00819-1
[10] F. Wang and X. Liu, Coloring 3-power of 3-subdivision of subcubic graph, Discrete Math. Algorithms Appl. 10 (2018), no. 3, Article ID: 1850041. https://doi.org/10.1142/S1793830918500416
Mozafari-Nia, M., & N. Iradmusa, M. (2024). Simultaneous coloring of vertices and incidences of hypercubes. Communications in Combinatorics and Optimization, 9(1), 67-77. doi: 10.22049/cco.2023.27843.1367
MLA
Mahsa Mozafari-Nia; Moharram N. Iradmusa. "Simultaneous coloring of vertices and incidences of hypercubes", Communications in Combinatorics and Optimization, 9, 1, 2024, 67-77. doi: 10.22049/cco.2023.27843.1367
HARVARD
Mozafari-Nia, M., N. Iradmusa, M. (2024). 'Simultaneous coloring of vertices and incidences of hypercubes', Communications in Combinatorics and Optimization, 9(1), pp. 67-77. doi: 10.22049/cco.2023.27843.1367
VANCOUVER
Mozafari-Nia, M., N. Iradmusa, M. Simultaneous coloring of vertices and incidences of hypercubes. Communications in Combinatorics and Optimization, 2024; 9(1): 67-77. doi: 10.22049/cco.2023.27843.1367