Simultaneous coloring of vertices and incidences of hypercubes

Mahsa Mozafari-Nia ${ }^{\dagger}$ and Moharram N. Iradmusa*
Department of Mathematical Sciences, Shahid Beheshti University G.C., P.O. Box 19839-63113, Tehran, Iran
\dagger mahsa.mozafari-nia@uni-konstanz.de
*m_iradmusa@sbu.ac.ir

Received: 24 May 2022; Accepted: 23 August 2023
Published Online: 26 August 2023

Abstract

An element $i=(v, e)$ of a graph G is called an incidence of G, if $v \in V(G)$, $e \in E(G)$ and $v \in e$. A vi-simultaneous proper coloring of a graph G is a coloring of the vertices and incidences of G properly at the same time such that any two adjacent or incident elements receive distinct colors. In this paper, we investigate the simultaneous coloring of vertices and incidences of hypercubes.

Keywords: Incidence of graph, simultaneous coloring of graph, hypercube
AMS Subject classification: 05C15

1. Introduction

All graphs we consider in this paper are simple, finite and undirected. For a graph $G, V(G), E(G)$ are its vertex set and edge set, respectively. Also, maximum degree of a graph G is denoted by $\Delta(G)$. For vertex $v \in V(G), N_{G}(v)$ is the set of neighbors of v in G and any vertex of degree k is called a k-vertex. From now on, we use the notation $[n]$ instead of $\{1, \ldots, n\}$.
Apart from vertices and edges of a graph, incidences are other elements of the graph introduced by Brualdi and Massey in 1993 in [1]. Any pair $i=(v, e)$ of a graph G is called an incidence of G, if $v \in V(G), e \in E(G)$ and $v \in e$. Also in this case the elements v and i are called incident. Let $I(G)$ be the set of incidences of a graph G. Two incidences (v, e) and (w, f) are adjacent if $(i) v=w$, or $(i i) e=f$, or (iii) $\{v, w\}=e$ or f. For any edge $e=\{u, v\}$, we call (u, e), the first incidence of u and (v, e), the second incidence of u.

[^0](c) 2024 Azarbaijan Shahid Madani University

A mapping c from $V(G)$ to $[k]$ is a proper k-coloring of G, if $c(v) \neq c(u)$ for any two adjacent vertices. A minimum integer k that G has a proper k-coloring is the chromatic number of G and denoted by $\chi(G)$. Incidence coloring of graphs as another type of coloring is a proper coloring of incidences of a graph such that any two adjacent incidences have different colors. The incidence chromatic number of a graph G, denoted by $\chi_{i}(G)$, is the minimum integer k such that G is incidence k-colorable. Proper coloring of vertices and incidences of a graph G at the same time, is a concept named $v i$-simultaneous proper coloring of G, which is introduced by Mozafari-Nia et al. in [4].

Definition 1. [4] Let G be a graph. A vi-simultaneous proper k-coloring of G is a coloring $c: V(G) \cup I(G) \longrightarrow[k]$ in which any two adjacent or incident elements in the set $V(G) \cup I(G)$ receive distinct colors. The vi-simultaneous chromatic number, denoted by $\chi_{v i}(G)$, is the smallest integer k such that G has a vi-simultaneous proper k-coloring.

The authors in [4] showed that the minimum number of colors for $v i$-simultaneous proper coloring of G is equal to the chromatic number of $G^{\frac{3}{3}}$, where $G^{\frac{3}{3}}$ is $\frac{3}{3}$-power of the graph G introduced by Iradmusa in [6] and defined in the following.
For a positive integer k, a k-power of G, denoted by G^{k}, is a graph with $V\left(G^{k}\right)=$ $V(G)$. Two vertices u and v of G^{k} are adjacent if and only if $1 \leq d_{G}(u, v) \leq k$. Moreover, the k-subdivision of G, denoted by $G^{\frac{1}{k}}$, is constructed by replacing each edge $x y$ of G with a path of length k, say $P_{x y}$ with vertices $(x y)_{0},(x y)_{1}, \ldots,(x y)_{k}$, where for $l \in\{0,1,2, \ldots, k\},(x y)_{l}$ has distance l from the vertex x. Note that $(x y)_{l}=(y x)_{k-l}, x=(x y)_{0}=(y x)_{k}$ and $y=(y x)_{0}=(x y)_{k}$. Any vertex $(x y)_{0}$ of $G^{\frac{1}{k}}$ is called a terminal vertex (or briefly t-vertex) and any of the remaining vertices is called an internal vertex (or briefly i-vertex). The fractional power of graphs which is in association with the two concepts above is defined as follows.

Definition 2. [6] Let G be a graph and $m, n \in \mathbb{N}$. The graph $G^{\frac{m}{n}}$ is defined to be the m-power of the n-subdivision of G. In other words, $G^{\frac{m}{n}}=\left(G^{\frac{1}{n}}\right)^{m}$.

According to the case $G^{\frac{3}{3}}$ in Definition 2 and the definition of the adjacency between incidences in the graph G, the internal vertices of $G^{\frac{3}{3}}$ can be considered as the incidences of G and so we denote two internal vertices $(u v)_{1}$ and $(u v)_{2}$ on the path $P_{u v}$ with (u, v) and (v, u), respectively. In general, for a vertex $v \in V(G)$, we can define $I_{1}^{G}(v)=\left\{(v u)_{1} \mid u \in N_{G}(v)\right\}$ and $I_{2}^{G}(v)=\left\{(v u)_{2} \mid u \in N_{G}(v)\right\}$. In addition, we have $I_{G}(v)=I_{1}^{G}(v) \cup I_{2}^{G}(v), I_{1}^{G}[v]=\{v\} \cup I_{1}^{G}(v)$ and $I_{G}[v]=\{v\} \cup I_{G}(v)$. Sometime we remove the index G for simplicity.
So far, the chromatic number of $\frac{3}{3}$-power of some classes of graphs are investigated in $[3-5,7,10]$. Clearly, for any graph G with maximum degree Δ, the value $\Delta+2$ is a trivial lower bound for $\chi\left(G^{\frac{3}{3}}\right)=\chi_{v i}(G)$. Regarding the upper bound, it is conjectured that the chromatic number of $\frac{3}{3}$-power of any graph G with maximum degree Δ is at most $2 \Delta+1[3]$.

Conjecture 1. [3] For any graph G with $\Delta(G) \geq 2, \chi\left(G^{\frac{3}{3}}\right) \leq 2 \Delta(G)+1$.

In [4], the $v i$-simultaneous coloring of some classes of graphs like k-degenerated graphs, cycles, forests, complete graphs and regular bipartite graphs are investigated and the correctness of Conjecture 1 has shown for such classes of graphs. In this paper, we are going to consider the vi-simultaneous coloring of hypercubes and show that the Conjecture 1 is true for these graphs. The main theorems of this paper are as follows.

Theorem 2. For $n \in \mathbb{N}$, the following statements are equivalent:

$$
\begin{aligned}
& \text { (i) } \chi\left(Q_{n}^{\frac{3}{3}}\right)=n+2, \\
& \text { (ii) } \chi\left(Q_{n+1}^{2}\right)=n+2, \\
& \text { (iii) } n=2^{k}-2 \text { where } 1<k \in \mathbb{N} \text {. }
\end{aligned}
$$

Theorem 3. If $n \in\left\{2^{k}+l \mid k \in \mathbb{N}, l \in \mathbb{Z},-1 \leq l \leq 2\right\} \backslash\{2,6\}$, then $\chi\left(Q_{n}^{\frac{3}{3}}\right)=n+3$.
Definition 3. Let G be a nonempty graph with $v i$-simultanious chromatic number equal to $\Delta(G)+1+s$, where $s \in \mathbb{N}$. We say that G is a graph of vi-class s.

According to the main results of the paper, $\chi_{v i}\left(Q_{n}\right) \leq n+3$ for any $n \in\{1,2, \ldots, 10\}$. So these hypercubes are graphs of vi-class one or two and we conjecture that there is no hypercube of $v i$-class three.

Conjecture 4. $\chi_{v i}\left(Q_{n}\right) \leq n+3$ for any $n \in \mathbb{N}$.

2. Proof of the main theorems

In this section, the chromatic number of $\frac{3}{3}$-power of hypercubes are investigated. A Cartesian product of two graphs G and H are a graph denoted by $G \square H$, whose vertex set is $\{(u, v): u \in V(G), v \in V(H)\}$. Two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent if and only if $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} or u_{1} is adjacent to u_{2} and $v_{1}=v_{2}$. The n-cube or n-dimensional hypercube Q_{n} is a graph whose set of vertices V, consists of the $2^{n} n$-dimensional boolean vectors where two vertices are adjacent whenever they differ in exactly one coordinate. It can be easily seen that Q_{n} is defined in terms of the Cartesian product of n copy of K_{2} and so $Q_{n}=Q_{r} \square Q_{t}$ where $r+t=n$.
In [8] and [2], it is shown that the incidence chromatic number of Q_{n} is $n+1$ or $n+2$.
Theorem 5. [2, 8] For any $n \in \mathbb{N}, \chi_{i}\left(Q_{n}\right)= \begin{cases}n+1 & n=2^{k}-1, k \in \mathbb{N} \\ n+2 & \text { otherwise. }\end{cases}$

In [9], using a relation between dominating sets and incidence chromatic number, the author characterize the $(r+1)$-incidence colorable r-regular graphs.

Theorem 6. [9] If G is an r-regular graph, then $\chi_{i}(G)=\chi\left(G^{2}\right)=r+1$ if and only if $V(G)$ is a disjoint union of $r+1$ dominating sets.

Theorem 7. For a hypercube graph Q_{n} with $n \geq 1, \chi_{v i}\left(Q_{n}\right) \leq \Delta\left(Q_{n}\right)+4=n+4$.

Proof. Since $\chi_{v i}\left(Q_{n}\right) \leq \chi_{i}\left(Q_{n}\right)+\chi\left(Q_{n}\right)$ and Q_{n} is a bipartite graph, by Theorem 5 we have $\chi_{v i}\left(Q_{n}\right) \leq n+2+2=n+4$.

In the following, we are going to show that $\chi_{v i}\left(Q_{n}\right)=n+2$ if and only if $n=2^{k}-2$ for $k \geq 2$, using the following lemmas. The set $\{c(a) \mid a \in A\}$ is denoted by $c(A)$, where $c: D \rightarrow R$ is a function and $A \subseteq D$.

Lemma 1. [4] Let G be a graph with maximum degree Δ and c is a proper $(\Delta+2)$ coloring of $G^{\frac{3}{3}}$ with colors from $[\Delta+2]$. Then $\left|c\left(I_{2}(v)\right)\right| \leq \Delta-d_{G}(v)+1$ for any t-vertex v. Specially $\left|c\left(I_{2}(v)\right)\right|=1$ for any Δ-vertex v of G.

Lemma 2. Let $n \in \mathbb{N}$ and $\chi\left(Q_{n}^{\frac{3}{3}}\right)=n+2$. Then n is an even number.
Proof. Suppose that $c: V\left(Q_{n}^{\frac{3}{3}}\right) \longrightarrow[n+2]$ is a proper coloring, $c(v)=k$ and $N_{Q_{n}}(v)=\left\{w_{1}, \ldots, w_{n}\right\}$. Therefore, $k \notin c\left(I_{1}(v) \cup I_{2}(v) \cup N_{Q_{n}}(v)\right)$. So there is exactly one vertex x_{1} in $N_{Q_{n}}\left(w_{1}\right) \backslash\{v\}$ such that $c\left(\left(w_{1}, x_{1}\right)\right)=k$.
Since the vertices v and x_{1} have a common neighbor w_{1} in Q_{n}, there should be one other common neighbor, named w_{2}. Since $c\left(\left(w_{1}, x_{1}\right)\right)=k$, by Lemma 1 we have $c\left(\left(w_{2}, x_{1}\right)\right)=k$. Now, consider the t-vertex w_{3}. Similarly, since $c\left(w_{3}\right) \neq k$, there is a vertex $x_{2} \in N_{Q_{n}}\left(w_{3}\right) \backslash\{v\}$ such that $c\left(\left(w_{3}, x_{2}\right)\right)=k$. Note that, $x_{1} \neq x_{2}$. Otherwise, two vertices v and x_{1} have three common neighbors which is a contradiction. Again, since the vertices v and x_{2} have the common neighbor w_{3}, there should be one other common neighbor, named w_{4} such that $c\left(\left(w_{4}, x_{2}\right)\right)=k$. By continuing this process, $N_{Q_{n}}(v)$ is partitioned into sets of size two. Therefore n must be even.

Lemma 3. Suppose that $c: V\left(Q_{n}^{\frac{3}{3}}\right) \longrightarrow[n+2]$ is a proper coloring. If $c\left(\left(v, u_{0}\right)\right)=k$, where $\left(v, u_{0}\right) \in I_{1}(v)$ then there is a vertex $u_{i} \in N_{Q_{n}}(v)$ with color k.

Proof. Suppose that $N_{Q_{n}}(v)=\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ and $k \notin c\left(N_{Q_{n}}(v) \backslash\left\{u_{0}\right\}\right)$. Then for any vertex $u_{i} \in N_{Q_{n}}(v) \backslash\left\{u_{0}\right\}$, we have $k \in c\left(I_{1}\left(u_{i}\right)\right)$. Moreover, since $c\left(\left(v, u_{0}\right)\right)=$ k, there is no color k on i-vertices of the edge $\left\{v, u_{i}\right\}, i \in[n-1]$. Hence, there is a vertex $x_{1} \in N\left(u_{1}\right) \backslash\{v\}$ such that $c\left(\left(u_{1}, x_{1}\right)\right)=k$.
Since the vertices v and x_{1} have a common neighbor u_{1}, so there should be one other common neighbor, named u_{2}. Since $c\left(\left(u_{1}, x_{1}\right)\right)=k$, by Theorem 1 we have $c\left(\left(u_{2}, x_{1}\right)\right)=k$. Now, consider the t-vertex u_{3}. Similarly, since $c\left(u_{3}\right) \neq k$, there is a vertex $x_{2} \in N\left(u_{3}\right) \backslash\{v\}$ such that $c\left(\left(u_{3}, x_{2}\right)\right)=k$. Note that, $x_{1} \neq x_{2}$. Otherwise, two vertices v and x_{1} have three common neighbors in Q_{n} which is a contradiction. Again, since two vertices v and x_{2} have a common neighbor u_{3}, there should be one
other common neighbor, named u_{4} and $c\left(\left(u_{4}, x_{2}\right)\right)=k$.
By continuing this process, $\left\{u_{1}, \ldots, u_{n-1}\right\}$ is partitioned into sets of size two. But $n-1$ is an odd integer and so this partition of $\left\{u_{1}, \ldots, u_{n-1}\right\}$ is impossible.

Corollary 1. Let $n \in \mathbb{N}$ and $c: V\left(Q_{n}^{\frac{3}{3}}\right) \longrightarrow[n+2]$ be a proper coloring. Then $c\left(I_{1}(v)\right)=c\left(N_{Q_{n}}(v)\right)$ for any vertex $v \in V\left(Q_{n}\right)$ and the restriction of c to $V\left(Q_{n}\right)$ is a proper coloring of Q_{n}^{2}.

Proof of Theorem 2. The equivalence of (ii) and (iii) is derived from Theorems 5 and 6 . Therefore, we only prove that (i) and (ii) are equivalent.
$(i) \Rightarrow(i i)$. Suppose that $G=Q_{n}, V(G)=\left\{v_{i} \mid 1 \leq i \leq 2^{n}\right\}, \chi\left(G^{\frac{3}{3}}\right)=n+2$ and $c: V\left(G^{\frac{3}{3}}\right) \longrightarrow[n+2]$ is a proper coloring. We know that $Q_{n+1}=Q_{n} \square K_{2}$ and so we can consider $V\left(Q_{n+1}\right)=V_{1} \cup V_{2}$ such that $V_{1}=\left\{v_{i} \mid 1 \leq i \leq 2^{n}\right\}$, $V_{2}=\left\{u_{i} \mid 1 \leq i \leq 2^{n}\right\}, Q_{n+1}\left[V_{1}\right] \cong G \cong Q_{n+1}\left[V_{2}\right]$ and $\left\{v_{i}, u_{i}\right\} \in E\left(Q_{n+1}\right)$ for each $i \in\left[2^{n}\right]$. Now we prove that the following coloring

$$
c^{\prime}: V\left(Q_{n+1}\right) \rightarrow[n+2], c^{\prime}(x)= \begin{cases}c(x) & x \in V_{1} \\ c\left(\left(v_{i}, v_{j}\right)\right) & x=u_{j} \in V_{2}, v_{i} \in N_{G}\left(v_{j}\right)\end{cases}
$$

is a proper coloring of Q_{n+1}^{2}.
Suppose that x and y are two adjacent vertices in Q_{n+1}^{2}. There are six cases.
Case 1. $d_{Q_{n+1}}(x, y)=1$ and $x, y \in V_{1}$.
In this case, x and y are adjacent in G and so $c^{\prime}(x)=c(x) \neq c(y)=c^{\prime}(y)$.
Case 2. $d_{Q_{n+1}}(x, y)=1, x, y \in V_{2}$.
In this case $x=u_{i}$ and $y=u_{j}$ and so $c^{\prime}(x)=c\left(\left(v_{j}, v_{i}\right) \neq c\left(\left(v_{i}, v_{j}\right)\right)=c^{\prime}(y)\right.$.
Case 3. $d_{Q_{n+1}}(x, y)=1, x \in V_{1}$ and $y \in V_{2}$.
In this case $x=v_{i}$ and $y=u_{i}$ and so $c^{\prime}(x)=c\left(v_{i}\right) \neq c\left(\left(v_{l}, v_{j}\right)\right)=c^{\prime}(y)$ where $v_{l} \in N_{G}\left(v_{j}\right)$.
Case 4. $d_{Q_{n+1}}(x, y)=2$ and $x, y \in V_{1}$.
In this case, Corollary 1 implies that $c(x) \neq c(y)$ and so $c^{\prime}(x)=c(x) \neq c(y)=c^{\prime}(y)$.
Case 5. $d_{Q_{n+1}}(x, y)=2$ and $x, y \in V_{2}$.
In this case, $x=u_{i}$ and $y=u_{j}$ such that $d_{G}\left(v_{i}, v_{j}\right)=2$. So $c^{\prime}(x)=c\left(\left(v_{l}, v_{i}\right) \neq\right.$ $c\left(\left(v_{l}, v_{j}\right)\right)=c^{\prime}(y)$ where $v_{l} \in N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{j}\right)$.
Case 6. $d_{Q_{n+1}}(x, y)=2, x \in V_{1}$ and $y \in V_{2}$.
In this case, $x=v_{i}, y=u_{j}$ such that $d_{G}\left(v_{i}, v_{j}\right)=1$. So $c^{\prime}(x)=c\left(v_{i}\right) \neq c\left(\left(v_{i}, v_{j}\right)\right)=$ $c^{\prime}(y)$.
Therefore, c^{\prime} is a proper coloring and $\chi\left(Q_{n+1}^{2}\right)=n+2$.
(ii) $\Rightarrow(i)$. Suppose that $\chi\left(Q_{n+1}^{2}\right)=n+2$ and $c: V\left(Q_{n+1}^{2}\right) \longrightarrow[n+2]$ is a proper coloring. Again, suppose that $V\left(Q_{n+1}\right)=V_{1} \cup V_{2}$ such that $V_{1}=\left\{v_{i} \mid 1 \leq i \leq 2^{n}\right\}$,
$V_{2}=\left\{u_{i} \mid 1 \leq i \leq 2^{n}\right\}, Q_{n+1}\left[V_{1}\right] \cong Q_{n} \cong Q_{n+1}\left[V_{2}\right]$ and $\left\{v_{i}, u_{i}\right\} \in E\left(Q_{n+1}\right)$ for each $i \in\left[2^{n}\right]$. We prove that the following coloring

$$
c^{\prime}: V(H) \rightarrow[n+2], c^{\prime}(x)= \begin{cases}c\left(v_{i}\right) & x=v_{i} \in V_{1} \\ c\left(u_{j}\right) & x=\left(v_{i}, v_{j}\right), v_{i} \in N_{Q_{n}}\left(v_{j}\right)\end{cases}
$$

is a proper coloring of $H=Q_{n}^{\frac{3}{3}}$ where $V\left(Q_{n}\right)=V_{1}$.
Suppose that x and y are two adjacent vertices in H. There are five cases.
Case 1. $x, y \in V_{1}$.
In this case, x and y are adjacent in Q_{n+1} and so $c^{\prime}(x)=c(x) \neq c(y)=c^{\prime}(y)$.
Case 2. $x \in V_{1}$ and $y \in I_{1}(x)$.
In this case $x=v_{i}$ and $y=\left(v_{i}, v_{j}\right)$. So $c^{\prime}(x)=c\left(v_{i}\right) \neq c\left(u_{j}\right)=c^{\prime}(y)$.
Case 3. $x \in V_{1}$ and $y \in I_{2}(x)$.
In this case $x=v_{i}$ and $y=\left(v_{j}, v_{i}\right)$. So $c^{\prime}(x)=c\left(v_{i}\right) \neq c\left(u_{i}\right)=c^{\prime}(y)$.
Case 4. $x, y \in I_{1}\left(v_{i}\right)$.
In this case, $x=\left(v_{i}, v_{j}\right)$ and $y=\left(v_{i}, v_{l}\right)$ such that $v_{j}, v_{l} \in N_{G}\left(v_{i}\right)$. So $c^{\prime}(x)=c\left(u_{j}\right) \neq$ $c\left(u_{l}\right)=c^{\prime}(y)$.
Case 5. $x=\left(v_{i}, v_{j}\right)$ and $y=\left(v_{l}, v_{i}\right)$ where $v_{j}, v_{l} \in N_{Q_{n}}\left(v_{i}\right)$.
In this case, $c^{\prime}(x)=c\left(u_{j}\right) \neq c\left(u_{i}\right)=c^{\prime}(y)$.
Note that $d_{Q_{n+1}}(x, y)=1$ in Cases 1,3 and 5 and $d_{Q_{n+1}}(x, y)=2$ in other cases. Therefore, c^{\prime} is a proper coloring and $\chi(H)=n+2$.

As you see, $\chi\left(Q_{n}^{\frac{3}{3}}\right)$ takes on three distinct values, $n+2, n+3$, or $n+4$. In continue, we find some $n \in \mathbb{N}$ such that $\chi\left(Q_{n}^{\frac{3}{3}}\right)=n+3$.

Proof of Theorem 3. We divide the proof to four parts:
(i) $l=-1$. By Theorem 2, $\chi\left(Q_{n}^{\frac{3}{3}}\right) \geq n+3$. In addition, by Theorem 5, $\chi_{i}\left(Q_{n}\right)=n+1$. Now, since Q_{n} is a bipartite graph, then $\chi\left(Q_{n}^{\frac{3}{3}}\right) \leq \chi_{i}\left(Q_{n}\right)+\chi\left(Q_{n}\right)=n+3$. Therefore, $\chi\left(Q_{n}^{\frac{3}{3}}\right)=n+3$.
(ii) $l=0$. By Theorem 2, $\chi\left(Q_{n}^{\frac{3}{3}}\right) \geq n+3$. It is enough to present a proper $(n+3)$ coloring for $Q_{n}^{\frac{3}{3}}$. We know that $Q_{n}=Q_{n-1} \square K_{2}$ and so we can consider $V\left(Q_{n}\right)=$ $V \cup V^{\prime}$ such that $V=\left\{v_{i} \mid 1 \leq i \leq 2^{n-1}\right\}, V^{\prime}=\left\{v_{i}^{\prime} \mid 1 \leq i \leq 2^{n-1}\right\}, G_{1}=Q_{n}[V] \cong$ $Q_{n-1} \cong Q_{n}\left[V^{\prime}\right]=G_{2}$ and $\left\{v_{i}, v_{i}^{\prime}\right\} \in E\left(Q_{n}\right)$ for each $i \in\left[2^{n-1}\right]$. Also let $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ be the bipartitions of G_{1} and G_{2}, respectively and $\left(A_{1} \cup A_{2}, B_{1} \cup B_{2}\right)$ be the bipartition of Q_{n}. Since $n-1=2^{k}-1$, by Theorem $6, V\left(G_{1}\right)$ is a disjoint union of n dominating sets $\mathcal{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ and also $V\left(G_{2}\right)$ is a disjoint union of n dominating sets $\mathcal{S}^{\prime}=\left\{S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right\}$. It can be easily seen that $\left|S_{i} \cap A_{1}\right|=\left|S_{i} \cap B_{1}\right|$ for any dominating set $S_{i} \in \mathcal{S}$ in G_{1} (and similarly for \mathcal{S}^{\prime} and G_{2}).
Suppose that $r \geq 2$. For any t-vertex $v_{i} \in S_{r}$, color all vertices of $I_{2}\left(v_{i}\right) \cap V\left(G_{1}^{\frac{3}{3}}\right)$ with color r and for any vertex $v_{i}^{\prime} \in S_{r}^{\prime}$, color all vertices of $I_{2}\left(v_{i}^{\prime}\right) \cap V\left(G_{2}^{\frac{3}{3}}\right)$ with color
r. Then for any two t-vertices $v_{i} \in S_{1}$ and $v_{i}^{\prime} \in S_{1}^{\prime}$, if $v_{i} \in A_{1}$ and $v_{i}^{\prime} \in B_{2}$, then color all i-vertices of $I_{2}\left(v_{i}\right) \cap V\left(G_{1}^{\frac{3}{3}}\right)$ and $I_{2}\left(v_{i}^{\prime}\right) \cap V\left(G_{2}^{\frac{3}{3}}\right)$ with color 1 and if $v_{i} \in B_{1}$ and $v_{i}^{\prime} \in A_{2}$, then color all i-vertices of $I_{2}\left(v_{i}\right) \cap V\left(G_{1}^{\frac{3}{3}}\right)$ and $I_{2}\left(v_{i}^{\prime}\right) \cap V\left(G_{2}^{\frac{3}{3}}\right)$ with color $n+1$.
To color t-vertices of Q_{n}, color all t-vertices of S_{1} and S_{1}^{\prime} with colors $n+2$ and $n+3$, respectively. Also for $i \geq 2$, assign color 1 and $n+1$ to all t-vertices of $\left(S_{i} \cap A_{1}\right) \cup\left(S_{i}^{\prime} \cap A_{2}\right)$ and $\left(S_{i} \cap B_{1}\right) \cup\left(S_{i}^{\prime} \cap B_{2}\right)$, respectively.
The only uncolored vertices of Q_{n} are all i-vertices on the edges between G_{1} and G_{2}. Let F_{i} be the set of edges between S_{i} and $S_{i}^{\prime}(i \in[n])$. Color all i-vertices on edges of F_{i} as follows.

- If $e=\left\{v_{i}, v_{i}^{\prime}\right\} \in F_{1}$ such that $v_{i} \in A_{1}$ and $v_{i}^{\prime} \in B_{2}$, then color i-vertices $\left(v_{i}, v_{i}^{\prime}\right)$ and (v_{i}^{\prime}, v_{i}) with colors $n+1$ and 1 , respectively.
- If $e=\left\{v_{i}, v_{i}^{\prime}\right\} \in F_{1}$ such that $v_{i} \in B_{1}$ and $v_{i}^{\prime} \in A_{2}$, then color i-vertices $\left(v_{i}, v_{i}^{\prime}\right)$ and (v_{i}^{\prime}, v_{i}) with colors 1 and $n+1$, respectively.
- If $e=\left\{v_{i}, v_{i}^{\prime}\right\} \in F_{j}$ and $j>1$, then color i-vertices $\left(v_{i}, v_{i}^{\prime}\right)$ and $\left(v_{i}^{\prime}, v_{i}\right)$ with colors $n+2$ and $n+3$, respectively.

With a simple review, we can show that the given coloring is a proper $(n+3)$-coloring for $Q_{n}^{\frac{3}{3}}$.
(iii) $l=1$. By Theorem 2, $\chi\left(Q_{n}^{\frac{3}{3}}\right) \geq n+3$. It is enough to show that $\chi\left(Q_{n}^{\frac{3}{3}}\right) \leq n+3$. Consider Q_{n} as a Cartesian product of two graphs Q_{n-2} and $Q_{2}=C_{4}$. Note that since $n-2=2^{k}-1, \chi_{i}\left(Q_{n-2}\right)=n-1$. Now, we divide the vertices of $Q_{n}^{\frac{3}{3}}$ to two sets: the first set, V_{1}, is the union of internal vertices of disjoint copies of Q_{n-2} and the second set, V_{2}, is the union of terminal and internal vertices of disjoint copies of Q_{2}. Therefore $\chi\left(Q_{n}^{\frac{3}{3}}\right) \leq \chi\left(Q_{n}^{\frac{3}{3}}\left[V_{1}\right]\right)+\chi\left(Q_{n}^{\frac{3}{3}}\left[V_{2}\right]\right)$. But $Q_{n}^{\frac{3}{3}}\left[V_{2}\right]$ is a subgraph of $Q_{n-2} \square Q_{2}^{\frac{3}{3}}$. So $\chi\left(Q_{n}^{\frac{3}{3}}\right) \leq \chi_{i}\left(2^{2} Q_{n-2}\right)+\chi\left(Q_{n-2} \square Q_{2}^{\frac{3}{3}}\right)=\chi_{i}\left(Q_{n-2}\right)+\max \left\{\chi\left(Q_{n-2}\right), \chi\left(Q_{2}^{\frac{3}{3}}\right)\right\}=$ $n-1+4=n+3$.
(iv) $l=2$. By Theorem 2, $\chi\left(Q_{n}^{\frac{3}{3}}\right) \geq n+3$. It is enough to present a proper $(n+3)$ coloring c of $Q_{n}^{\frac{3}{3}}$ using Cartesian product of graphs.
Consider Q_{n} as the Cartesian product of two graphs Q_{n-2} and $Q_{2}=C_{4}$. So we have 4 copies G_{1}, \ldots, G_{4} of Q_{n-2}, in which any t-vertex of G_{i} is adjacent to its correspond t vertex in G_{i+1}, in which the indices are in module of 4. According to the proof of Part (ii), for $i \in$ [4], the bipartitie graph G_{i} with bipatition $\left(\left(A_{i, 1} \cup A_{i, 2}\right),\left(B_{i, 1} \cup B_{i, 2}\right)\right)$ is the union of two copies of Q_{n-3}, named $G_{i, 1}$ and $G_{i, 2}$ and a perfect matching between them. Color each copy G_{i} like the given coloring in Part (ii) of the proof with colors in $[n+1]$. The $(n+1)$-coloring of $G_{1}^{\frac{3}{3}}$ is shown in Figure 1. Now, we are going to recolor some t-vertices and i-vertices of copies G_{2}, G_{3} and G_{4} and then color the remain uncolored vertices.

- Color $G_{2,1}^{\frac{3}{3}}$ and $G_{2,2}^{\frac{3}{3}}$ as same as coloring of $G_{1,2}^{\frac{3}{3}}$ and $G_{1,1}^{\frac{3}{3}}$, repectively. Due to this coloring, for $i>1$ and each edge $e=\left\{v, v^{\prime}\right\} \in F_{i} \subseteq E\left(G_{2}\right)$ we have

Figure 1. $(n+1)$-coloring of $G_{1}^{\frac{3}{3}}$.
$c\left(\left(v, v^{\prime}\right)\right)=n$ and $c\left(\left(v^{\prime}, v\right)\right)=n+1$, where F_{i} is the edge set defined in the proof of Part (ii). Also if $v \in\left(S_{2,1} \cap A_{2,1}\right) \cup\left(S_{2,2}^{\prime} \cap A_{2,2}\right)$, then $c(v)=n$ and if $v \in\left(S_{2,1} \cap B_{2,1}\right) \cup\left(S_{2,1}^{\prime} \cap B_{2,2}\right)$, then $c(v)=n+1$. Now, for $i>1$ and an edge $e=\left\{v, v^{\prime}\right\} \in F_{i} \subseteq E\left(G_{2}\right)$, change the color of two i-vertices $\left(v, v^{\prime}\right)$ and $\left(v^{\prime}, v\right)$ to $n+2$ and $n+3$. Also recolor t-vertices $v \in\left(S_{2,1} \cap A_{2,1}\right) \cup\left(S_{2,1}^{\prime} \cap A_{2,2}\right)$ and $v \in\left(S_{2,1} \cap B_{2,1}\right) \cup\left(S_{2,1}^{\prime} \cap B_{2,2}\right)$ with colors $n+2$ and $n+3$, respectively. Color of some i-vertices and t-vertices of $G_{2}^{\frac{3}{3}}$ are shown in Figure 2.

- First, color $G_{3,1}^{\frac{3}{3}}$ and $G_{3,2}^{\frac{3}{3}}$ as same as coloring of $G_{1,2}^{\frac{3}{3}}$ and $G_{1,1}^{\frac{3}{3}}$, repectively. Then, for $e=\left\{v, v^{\prime}\right\} \in F_{i}$ and $i>1$, recolor to i-vertices $\left(v, v^{\prime}\right)$ and $\left(v^{\prime}, v\right)$ with colors $n+1$ and n, respectively. Also, recolor the t-vertices of $\left(S_{3,1} \cap A_{3,1}\right) \cup$ $\left(S_{3,1}^{\prime} \cap A_{3,2}\right)$ and $\left(S_{3,1} \cap B_{3,1}\right) \cup\left(S_{3,1}^{\prime} \cap B_{3,2}\right)$ with colors $n+1$ and n, respectively.
- First, color $G_{4,1}^{\frac{3}{3}}$ and $G_{4,2}^{\frac{3}{3}}$ as same as coloring of $G_{1,2}^{\frac{3}{3}}$ and $G_{1,1}^{\frac{3}{3}}$, repectively. Then, for $e=\left\{v, v^{\prime}\right\} \in F_{i}$ and $i>1$, recolor to i-vertices $\left(v, v^{\prime}\right)$ and $\left(v^{\prime}, v\right)$ with colors $n+2$ and $n+3$, respectively. Also recolor the t-vertices of ($S_{4,1} \cap$ $\left.A_{4,1}\right) \cup\left(S_{4,1}^{\prime} \cap A_{4,2}\right)$ and $\left(S_{4,1} \cap B_{4,1}\right) \cup\left(S_{4,1}^{\prime} \cap B_{4,2}\right)$ with colors $n+3$ and $n+2$, respectively.

The only uncolored vertices of Q_{n} are all i-vertices on the edges between 4 copies G_{1}, \ldots, G_{4}. To color these i-vertices do as follows. Note that, the indices are in module 4.

- For $1 \leq i \leq 4$ if $v \in S_{i, 1} \cap A_{i, 1}$ and $u \in S_{i+1,1} \cap A_{i+1,1}$, then color two i-vertices (v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in $S_{i+1,1} \cap B_{i+1,1}$ and β is the color of all t-vertices in $S_{i, 1} \cap B_{i, 1}$.
- For $1 \leq i \leq 4$ if $v \in S_{i, 1} \cap B_{i, 1}$ and $u \in S_{i+1,1} \cap B_{i+1,1}$, then color two i-vertices (v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in $S_{i+1,1} \cap A_{i+1,1}$ and β is the color of all t-vertices in $S_{i, 1} \cap A_{i, 1}$.

Figure 2. $(n+3)$-coloring of $G_{2}^{\frac{3}{3}}, G_{3}^{\frac{3}{3}}$ and $G_{4}^{\frac{3}{3}}$

- For $1 \leq i \leq 4$ if $v \in S_{i, 1}^{\prime} \cap A_{i, 2}$ and $u \in S_{i+1,1}^{\prime} \cap A_{i+1,2}$, then color two i-vertices (v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in $S_{i+1,1}^{\prime} \cap B_{i+1,2}$ and β is the color of all t-vertices in $S_{i, 1}^{\prime} \cap B_{i, 2}$.
- For $1 \leq i \leq 4$ if $v \in S_{i, 1}^{\prime} \cap B_{i, 2}$ and $u \in S_{i+1,1}^{\prime} \cap B_{i+1,2}$, then color two i-vertices
(v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in $S_{i+1,1}^{\prime} \cap A_{i+1,2}$ and β is the color of all t-vertices in $S_{i, 1}^{\prime} \cap A_{i, 2}$.
- For $j>1$ and $1 \leq i \leq 4$ if $v \in S_{i, j} \cap A_{i, 1}$ and $u \in S_{i+1, j} \cap A_{i+1,1}$, then color two t-vertices (v, u) and (u, v) as same as t-vertices $c\left(\left(u^{\prime}, u\right)\right)$ and $c\left(\left(v^{\prime}, v\right)\right)$, where $u^{\prime} \in S_{i+1, j}^{\prime} \cap B_{i+1,2}$ and $v^{\prime} \in S_{i, j}^{\prime} \cap B_{i, 2}$.
- For $j>1$ and $1 \leq i \leq 4$ if $v \in S_{i, j} \cap B_{i, 1}$ and $u \in S_{i+1, j} \cap B_{i+1,1}$, then color two t-vertices (v, u) and (u, v) as same as t-vertices $c\left(\left(u^{\prime}, u\right)\right)$ and $c\left(\left(u, u^{\prime}\right)\right)$, where $u^{\prime} \in S_{i+1, j}^{\prime} \cap A_{i+1,2}$ and $v^{\prime} \in S_{i, j}^{\prime} \cap A_{i, 2}$.
- For $j>1$ and $1 \leq i \leq 4$ if $v \in S_{i, j}^{\prime} \cap A_{i, 2}$ and $u \in S_{i+1, j}^{\prime} \cap A_{i+1,2}$, then color two t-vertices (v, u) and (u, v) as same as t-vertices $c\left(\left(u^{\prime}, u\right)\right)$ and $c\left(\left(v^{\prime}, v\right)\right)$, where $u^{\prime} \in S_{i+1, j} \cap B_{i+1,1}$ and $v^{\prime} \in S_{i, j} \cap B_{i, 1}$.
- For $j>1$ and $1 \leq i \leq 4$ if $v \in S_{i, j}^{\prime} \cap B_{i, 2}$ and $u \in S_{i+1, j}^{\prime} \cap B_{i+1,2}$, then color two t-vertices (v, u) and (u, v) as same as t-vertices $c\left(\left(u^{\prime}, u\right)\right)$ and $c\left(\left(u, u^{\prime}\right)\right)$, where $u^{\prime} \in S_{i+1, j} \cap A_{i+1,1}$ and $v^{\prime} \in S_{i, j} \cap A_{i, 1}$.

We can check that each color class is an independent set and the given coloring is a proper $(n+3)$-coloring of $Q_{n}^{\frac{3}{3}}$.

Acknowledgements. We would like to thank the referee for the careful reading of the paper and the suggestions.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. There is no data associated with this article.

References

[1] R.A. Brualdi and J.J.Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993), no. 1-3, 51-58 https://doi.org/10.1016/0012-365X(93)90286-3.
[2] P. Gregor, B. Lužar, and R. Soták, On incidence coloring conjecture in cartesian products of graphs, Discrete Appl. Math. 213 (2016), 93-100 https://doi.org/10.1016/j.dam.2016.04.030.
[3] M. Mozafari-Nia and M. Nejad Iradmusa, A note on coloring of $\frac{3}{3}$-power of subquartic graphs, Australas. J. Combin. 79 (2021), no. 3, 454-460.
[4] , Simultaneous coloring of vertices and incidences of graphs, Australas. J. Combin. 85 (2023), no. 3, 287-307.
[5] , Simultaneous coloring of vertices and incidences of outerplanar graphs, Electron. J. Graph Theory Appl. 11 (2023), no. 1, 245-262
https://dx.doi.org/10.5614/ejgta.2023.11.1.20.
[6] M. Nejad Iradmusa, On colorings of graph fractional powers, Discrete Math. $\mathbf{3 1 0}$ (2010), no. 10-11, 1551-1556 https://doi.org/10.1016/j.disc.2010.01.017.
[7] , A short proof of 7-colorability of $\frac{3}{3}$-power of sub-cubic graphs, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 1, 225-226 https://doi.org/10.1007/s40995-020-00819-1.
[8] K.J. Pai, J.M. Chang, J.S. Yang, and R.Y. Wu, Incidence coloring on hypercubes, Theoret. Comput. Sci. 557 (2014), 59-65 https://doi.org/10.1016/j.tcs.2014.08.017.
[9] P.K. Sun, Incidence coloring of regular graphs and complement graphs, Taiwanese J.M. 16 (2012), no. 6, 2289-2295 https://doi.org/10.11650/twjm/1500406852.
[10] F. Wang and X. Liu, Coloring 3-power of 3-subdivision of subcubic graph, Discrete Math. Algorithms Appl. 10 (2018), no. 3, Article ID: 1850041 https://doi.org/10.1142/S1793830918500416.

[^0]: * Corresponding Author

