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Abstract: An element i = (v, e) of a graph G is called an incidence of G, if v ∈ V (G),
e ∈ E(G) and v ∈ e. A vi-simultaneous proper coloring of a graph G is a coloring of the

vertices and incidences of G properly at the same time such that any two adjacent or

incident elements receive distinct colors. In this paper, we investigate the simultaneous
coloring of vertices and incidences of hypercubes.
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1. Introduction

All graphs we consider in this paper are simple, finite and undirected. For a graph

G, V (G), E(G) are its vertex set and edge set, respectively. Also, maximum degree

of a graph G is denoted by ∆(G). For vertex v ∈ V (G), NG(v) is the set of neighbors

of v in G and any vertex of degree k is called a k-vertex. From now on, we use the

notation [n] instead of {1, . . . , n}.
Apart from vertices and edges of a graph, incidences are other elements of the graph

introduced by Brualdi and Massey in 1993 in [1]. Any pair i = (v, e) of a graph G

is called an incidence of G, if v ∈ V (G), e ∈ E(G) and v ∈ e. Also in this case the

elements v and i are called incident. Let I(G) be the set of incidences of a graph

G. Two incidences (v, e) and (w, f) are adjacent if (i) v = w, or (ii) e = f , or (iii)

{v, w} = e or f . For any edge e = {u, v}, we call (u, e), the first incidence of u and

(v, e), the second incidence of u.
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A mapping c from V (G) to [k] is a proper k-coloring of G, if c(v) 6= c(u) for any

two adjacent vertices. A minimum integer k that G has a proper k-coloring is the

chromatic number of G and denoted by χ(G). Incidence coloring of graphs as another

type of coloring is a proper coloring of incidences of a graph such that any two

adjacent incidences have different colors. The incidence chromatic number of a graph

G, denoted by χi(G), is the minimum integer k such that G is incidence k-colorable.

Proper coloring of vertices and incidences of a graph G at the same time, is a concept

named vi-simultaneous proper coloring of G, which is introduced by Mozafari-Nia et

al. in [4].

Definition 1. [4] Let G be a graph. A vi-simultaneous proper k-coloring of G is a
coloring c : V (G) ∪ I(G) −→ [k] in which any two adjacent or incident elements in the
set V (G) ∪ I(G) receive distinct colors. The vi-simultaneous chromatic number, denoted by
χvi(G), is the smallest integer k such that G has a vi-simultaneous proper k-coloring.

The authors in [4] showed that the minimum number of colors for vi-simultaneous

proper coloring of G is equal to the chromatic number of G
3
3 , where G

3
3 is 3

3 -power

of the graph G introduced by Iradmusa in [6] and defined in the following.

For a positive integer k, a k-power of G, denoted by Gk, is a graph with V (Gk) =

V (G). Two vertices u and v of Gk are adjacent if and only if 1 ≤ dG(u, v) ≤ k.

Moreover, the k-subdivision of G, denoted by G
1
k , is constructed by replacing each

edge xy of G with a path of length k, say Pxy with vertices (xy)0, (xy)1, . . . , (xy)k,

where for l ∈ {0, 1, 2, . . . , k}, (xy)l has distance l from the vertex x. Note that

(xy)l = (yx)k−l, x = (xy)0 = (yx)k and y = (yx)0 = (xy)k. Any vertex (xy)0 of G
1
k

is called a terminal vertex (or briefly t-vertex) and any of the remaining vertices is

called an internal vertex (or briefly i-vertex). The fractional power of graphs which

is in association with the two concepts above is defined as follows.

Definition 2. [6] Let G be a graph and m,n ∈ N. The graph G
m
n is defined to be the

m-power of the n-subdivision of G. In other words, G
m
n = (G

1
n )m.

According to the case G
3
3 in Definition 2 and the definition of the adjacency between

incidences in the graph G, the internal vertices of G
3
3 can be considered as the inci-

dences of G and so we denote two internal vertices (uv)1 and (uv)2 on the path Puv

with (u, v) and (v, u), respectively. In general, for a vertex v ∈ V (G), we can define

IG1 (v) = {(vu)1 | u ∈ NG(v)} and IG2 (v) = {(vu)2 | u ∈ NG(v)}. In addition, we have

IG(v) = IG1 (v) ∪ IG2 (v) , IG1 [v] = {v} ∪ IG1 (v) and IG[v] = {v} ∪ IG(v). Sometime we

remove the index G for simplicity.

So far, the chromatic number of 3
3 -power of some classes of graphs are investigated in

[3–5, 7, 10]. Clearly, for any graph G with maximum degree ∆, the value ∆ + 2 is a

trivial lower bound for χ(G
3
3 ) = χvi(G). Regarding the upper bound, it is conjectured

that the chromatic number of 3
3 -power of any graph G with maximum degree ∆ is at

most 2∆ + 1 [3].
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Conjecture 1. [3] For any graph G with ∆(G) ≥ 2, χ(G
3
3 ) ≤ 2∆(G) + 1.

In [4], the vi-simultaneous coloring of some classes of graphs like k-degenerated graphs,

cycles, forests, complete graphs and regular bipartite graphs are investigated and the

correctness of Conjecture 1 has shown for such classes of graphs. In this paper, we

are going to consider the vi-simultaneous coloring of hypercubes and show that the

Conjecture 1 is true for these graphs. The main theorems of this paper are as follows.

Theorem 2. For n ∈ N, the following statements are equivalent:

(i) χ(Q
3
3
n ) = n+ 2,

(ii) χ(Q2
n+1) = n+ 2,

(iii) n = 2k − 2 where 1 < k ∈ N.

Theorem 3. If n ∈ {2k + l | k ∈ N, l ∈ Z,−1 ≤ l ≤ 2} \ {2, 6}, then χ(Q
3
3
n ) = n+ 3.

Definition 3. Let G be a nonempty graph with vi-simultanious chromatic number equal
to ∆(G) + 1 + s, where s ∈ N. We say that G is a graph of vi-class s.

According to the main results of the paper, χvi(Qn) ≤ n+3 for any n ∈ {1, 2, . . . , 10}.
So these hypercubes are graphs of vi-class one or two and we conjecture that there is

no hypercube of vi-class three.

Conjecture 4. χvi(Qn) ≤ n+ 3 for any n ∈ N.

2. Proof of the main theorems

In this section, the chromatic number of 3
3 -power of hypercubes are investigated. A

Cartesian product of two graphs G and H are a graph denoted by G�H, whose vertex

set is {(u, v) : u ∈ V (G), v ∈ V (H)}. Two vertices (u1, v1) and (u2, v2) are adjacent

if and only if u1 = u2 and v1 is adjacent to v2 or u1 is adjacent to u2 and v1 = v2.

The n-cube or n-dimensional hypercube Qn is a graph whose set of vertices V , consists

of the 2n n-dimensional boolean vectors where two vertices are adjacent whenever they

differ in exactly one coordinate. It can be easily seen that Qn is defined in terms of

the Cartesian product of n copy of K2 and so Qn = Qr�Qt where r + t = n.

In [8] and [2], it is shown that the incidence chromatic number of Qn is n+1 or n+2.

Theorem 5. [2, 8] For any n ∈ N, χi(Qn) =

{
n+ 1 n = 2k − 1, k ∈ N
n+ 2 otherwise.

In [9], using a relation between dominating sets and incidence chromatic number, the

author characterize the (r + 1)-incidence colorable r-regular graphs.
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Theorem 6. [9] If G is an r-regular graph, then χi(G) = χ(G2) = r + 1 if and only if
V (G) is a disjoint union of r + 1 dominating sets.

Theorem 7. For a hypercube graph Qn with n ≥ 1, χvi(Qn) ≤ ∆(Qn) + 4 = n+ 4.

Proof. Since χvi(Qn) ≤ χi(Qn) +χ(Qn) and Qn is a bipartite graph, by Theorem 5

we have χvi(Qn) ≤ n+ 2 + 2 = n+ 4.

In the following, we are going to show that χvi(Qn) = n+ 2 if and only if n = 2k − 2

for k ≥ 2, using the following lemmas. The set {c(a) | a ∈ A} is denoted by c(A),

where c : D → R is a function and A ⊆ D.

Lemma 1. [4] Let G be a graph with maximum degree ∆ and c is a proper (∆ + 2)-

coloring of G
3
3 with colors from [∆ + 2]. Then |c(I2(v))| ≤ ∆− dG(v) + 1 for any t-vertex v.

Specially |c(I2(v))| = 1 for any ∆-vertex v of G.

Lemma 2. Let n ∈ N and χ(Q
3
3
n ) = n+ 2. Then n is an even number.

Proof. Suppose that c : V (Q
3
3
n ) −→ [n + 2] is a proper coloring, c(v) = k and

NQn
(v) = {w1, . . . , wn}. Therefore, k /∈ c(I1(v)∪ I2(v)∪NQn

(v)). So there is exactly

one vertex x1 in NQn
(w1) \ {v} such that c((w1, x1)) = k.

Since the vertices v and x1 have a common neighbor w1 in Qn, there should be one

other common neighbor, named w2. Since c((w1, x1)) = k, by Lemma 1 we have

c((w2, x1)) = k. Now, consider the t-vertex w3. Similarly, since c(w3) 6= k, there is a

vertex x2 ∈ NQn(w3) \ {v} such that c((w3, x2)) = k. Note that, x1 6= x2. Otherwise,

two vertices v and x1 have three common neighbors which is a contradiction. Again,

since the vertices v and x2 have the common neighbor w3, there should be one other

common neighbor, named w4 such that c((w4, x2)) = k. By continuing this process,

NQn
(v) is partitioned into sets of size two. Therefore n must be even.

Lemma 3. Suppose that c : V (Q
3
3
n ) −→ [n + 2] is a proper coloring. If c((v, u0)) = k,

where (v, u0) ∈ I1(v) then there is a vertex ui ∈ NQn(v) with color k.

Proof. Suppose that NQn
(v) = {u0, u1, . . . , un−1} and k /∈ c(NQn

(v) \ {u0}). Then

for any vertex ui ∈ NQn
(v)\{u0}, we have k ∈ c(I1(ui)). Moreover, since c((v, u0)) =

k, there is no color k on i-vertices of the edge {v, ui}, i ∈ [n − 1]. Hence, there is a

vertex x1 ∈ N(u1) \ {v} such that c((u1, x1)) = k.

Since the vertices v and x1 have a common neighbor u1, so there should be one

other common neighbor, named u2. Since c((u1, x1)) = k, by Theorem 1 we have

c((u2, x1)) = k. Now, consider the t-vertex u3. Similarly, since c(u3) 6= k, there is a

vertex x2 ∈ N(u3) \ {v} such that c((u3, x2)) = k. Note that, x1 6= x2. Otherwise,

two vertices v and x1 have three common neighbors in Qn which is a contradiction.

Again, since two vertices v and x2 have a common neighbor u3, there should be one
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other common neighbor, named u4 and c((u4, x2)) = k.

By continuing this process, {u1, . . . , un−1} is partitioned into sets of size two. But

n− 1 is an odd integer and so this partition of {u1, . . . , un−1} is impossible.

Corollary 1. Let n ∈ N and c : V (Q
3
3
n ) −→ [n + 2] be a proper coloring. Then

c(I1(v)) = c(NQn(v)) for any vertex v ∈ V (Qn) and the restriction of c to V (Qn) is a proper
coloring of Q2

n.

Proof of Theorem 2. The equivalence of (ii) and (iii) is derived from Theorems 5

and 6. Therefore, we only prove that (i) and (ii) are equivalent.

(i) ⇒ (ii). Suppose that G = Qn, V (G) = {vi | 1 ≤ i ≤ 2n}, χ(G
3
3 ) = n + 2

and c : V (G
3
3 ) −→ [n + 2] is a proper coloring. We know that Qn+1 = Qn�K2

and so we can consider V (Qn+1) = V1 ∪ V2 such that V1 = {vi | 1 ≤ i ≤ 2n},
V2 = {ui | 1 ≤ i ≤ 2n}, Qn+1[V1] ∼= G ∼= Qn+1[V2] and {vi, ui} ∈ E(Qn+1) for each

i ∈ [2n]. Now we prove that the following coloring

c′ : V (Qn+1)→ [n+ 2], c′(x) =

{
c(x) x ∈ V1
c((vi, vj)) x = uj ∈ V2, vi ∈ NG(vj)

is a proper coloring of Q2
n+1.

Suppose that x and y are two adjacent vertices in Q2
n+1. There are six cases.

Case 1. dQn+1
(x, y) = 1 and x, y ∈ V1.

In this case, x and y are adjacent in G and so c′(x) = c(x) 6= c(y) = c′(y).

Case 2. dQn+1
(x, y) = 1, x, y ∈ V2.

In this case x = ui and y = uj and so c′(x) = c((vj , vi) 6= c((vi, vj)) = c′(y).

Case 3. dQn+1(x, y) = 1, x ∈ V1 and y ∈ V2.

In this case x = vi and y = ui and so c′(x) = c(vi) 6= c((vl, vj)) = c′(y) where

vl ∈ NG(vj).

Case 4.dQn+1(x, y) = 2 and x, y ∈ V1.

In this case, Corollary 1 implies that c(x) 6= c(y) and so c′(x) = c(x) 6= c(y) = c′(y).

Case 5. dQn+1
(x, y) = 2 and x, y ∈ V2.

In this case, x = ui and y = uj such that dG(vi, vj) = 2. So c′(x) = c((vl, vi) 6=
c((vl, vj)) = c′(y) where vl ∈ NG(vi) ∩NG(vj).

Case 6. dQn+1
(x, y) = 2, x ∈ V1 and y ∈ V2.

In this case, x = vi, y = uj such that dG(vi, vj) = 1. So c′(x) = c(vi) 6= c((vi, vj)) =

c′(y).

Therefore, c′ is a proper coloring and χ(Q2
n+1) = n+ 2.

(ii) ⇒ (i). Suppose that χ(Q2
n+1) = n + 2 and c : V (Q2

n+1) −→ [n + 2] is a proper

coloring. Again, suppose that V (Qn+1) = V1 ∪ V2 such that V1 = {vi | 1 ≤ i ≤ 2n},
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V2 = {ui | 1 ≤ i ≤ 2n}, Qn+1[V1] ∼= Qn
∼= Qn+1[V2] and {vi, ui} ∈ E(Qn+1) for each

i ∈ [2n]. We prove that the following coloring

c′ : V (H)→ [n+ 2], c′(x) =

{
c(vi) x = vi ∈ V1
c(uj) x = (vi, vj), vi ∈ NQn

(vj)

is a proper coloring of H = Q
3
3
n where V (Qn) = V1.

Suppose that x and y are two adjacent vertices in H. There are five cases.

Case 1. x, y ∈ V1.

In this case, x and y are adjacent in Qn+1 and so c′(x) = c(x) 6= c(y) = c′(y).

Case 2. x ∈ V1 and y ∈ I1(x).

In this case x = vi and y = (vi, vj). So c′(x) = c(vi) 6= c(uj) = c′(y).

Case 3. x ∈ V1 and y ∈ I2(x).

In this case x = vi and y = (vj , vi). So c′(x) = c(vi) 6= c(ui) = c′(y).

Case 4. x, y ∈ I1(vi).

In this case, x = (vi, vj) and y = (vi, vl) such that vj , vl ∈ NG(vi). So c′(x) = c(uj) 6=
c(ul) = c′(y).

Case 5. x = (vi, vj) and y = (vl, vi) where vj , vl ∈ NQn
(vi).

In this case, c′(x) = c(uj) 6= c(ui) = c′(y).

Note that dQn+1
(x, y) = 1 in Cases 1, 3 and 5 and dQn+1

(x, y) = 2 in other cases.

Therefore, c′ is a proper coloring and χ(H) = n+ 2. �

As you see, χ(Q
3
3
n ) takes on three distinct values, n + 2, n + 3, or n + 4. In

continue, we find some n ∈ N such that χ(Q
3
3
n ) = n+ 3.

Proof of Theorem 3. We divide the proof to four parts:

(i) l = −1. By Theorem 2, χ(Q
3
3
n ) ≥ n+3. In addition, by Theorem 5, χi(Qn) = n+1.

Now, since Qn is a bipartite graph, then χ(Q
3
3
n ) ≤ χi(Qn)+χ(Qn) = n+3. Therefore,

χ(Q
3
3
n ) = n+ 3.

(ii) l = 0. By Theorem 2, χ(Q
3
3
n ) ≥ n + 3. It is enough to present a proper (n + 3)-

coloring for Q
3
3
n . We know that Qn = Qn−1�K2 and so we can consider V (Qn) =

V ∪ V ′ such that V = {vi | 1 ≤ i ≤ 2n−1}, V ′ = {v′i | 1 ≤ i ≤ 2n−1}, G1 = Qn[V ] ∼=
Qn−1 ∼= Qn[V ′] = G2 and {vi, v′i} ∈ E(Qn) for each i ∈ [2n−1]. Also let (A1, B1)

and (A2, B2) be the bipartitions of G1 and G2, respectively and (A1 ∪ A2, B1 ∪ B2)

be the bipartition of Qn. Since n − 1 = 2k − 1, by Theorem 6, V (G1) is a disjoint

union of n dominating sets S = {S1, . . . , Sn} and also V (G2) is a disjoint union of n

dominating sets S ′ = {S′1, . . . , S′n}. It can be easily seen that |Si ∩ A1| = |Si ∩ B1|
for any dominating set Si ∈ S in G1 (and similarly for S ′ and G2).

Suppose that r ≥ 2. For any t-vertex vi ∈ Sr, color all vertices of I2(vi) ∩ V (G
3
3
1 )

with color r and for any vertex v′i ∈ S′r, color all vertices of I2(v′i)∩V (G
3
3
2 ) with color
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r. Then for any two t-vertices vi ∈ S1 and v′i ∈ S′1, if vi ∈ A1 and v′i ∈ B2, then

color all i-vertices of I2(vi) ∩ V (G
3
3
1 ) and I2(v′i) ∩ V (G

3
3
2 ) with color 1 and if vi ∈ B1

and v′i ∈ A2, then color all i-vertices of I2(vi)∩V (G
3
3
1 ) and I2(v′i)∩V (G

3
3
2 ) with color

n+ 1.

To color t-vertices of Qn, color all t-vertices of S1 and S′1 with colors n + 2 and

n + 3, respectively. Also for i ≥ 2, assign color 1 and n + 1 to all t-vertices of

(Si ∩A1) ∪ (S′i ∩A2) and (Si ∩B1) ∪ (S′i ∩B2), respectively.

The only uncolored vertices of Qn are all i-vertices on the edges between G1 and G2.

Let Fi be the set of edges between Si and S′i (i ∈ [n]). Color all i-vertices on edges of

Fi as follows.

• If e = {vi, v′i} ∈ F1 such that vi ∈ A1 and v′i ∈ B2 , then color i-vertices (vi, v
′
i)

and (v′i, vi) with colors n+ 1 and 1, respectively.

• If e = {vi, v′i} ∈ F1 such that vi ∈ B1 and v′i ∈ A2, then color i-vertices (vi, v
′
i)

and (v′i, vi) with colors 1 and n+ 1, respectively.

• If e = {vi, v′i} ∈ Fj and j > 1, then color i-vertices (vi, v
′
i) and (v′i, vi) with

colors n+ 2 and n+ 3, respectively.

With a simple review, we can show that the given coloring is a proper (n+3)-coloring

for Q
3
3
n .

(iii) l = 1. By Theorem 2, χ(Q
3
3
n ) ≥ n+ 3. It is enough to show that χ(Q

3
3
n ) ≤ n+ 3.

Consider Qn as a Cartesian product of two graphs Qn−2 and Q2 = C4. Note that

since n−2 = 2k−1, χi(Qn−2) = n−1. Now, we divide the vertices of Q
3
3
n to two sets:

the first set, V1, is the union of internal vertices of disjoint copies of Qn−2 and the

second set, V2, is the union of terminal and internal vertices of disjoint copies of Q2.

Therefore χ(Q
3
3
n ) ≤ χ(Q

3
3
n [V1]) + χ(Q

3
3
n [V2]). But Q

3
3
n [V2] is a subgraph of Qn−2�Q

3
3
2 .

So χ(Q
3
3
n ) ≤ χi(2

2Qn−2) + χ(Qn−2�Q
3
3
2 ) = χi(Qn−2) + max{χ(Qn−2), χ(Q

3
3
2 )} =

n− 1 + 4 = n+ 3.

(iv) l = 2. By Theorem 2, χ(Q
3
3
n ) ≥ n+ 3. It is enough to present a proper (n+ 3)-

coloring c of Q
3
3
n using Cartesian product of graphs.

Consider Qn as the Cartesian product of two graphs Qn−2 and Q2 = C4. So we have 4

copies G1, . . . , G4 of Qn−2, in which any t-vertex of Gi is adjacent to its correspond t-

vertex in Gi+1, in which the indices are in module of 4. According to the proof of Part

(ii), for i ∈ [4], the bipartitie graph Gi with bipatition ((Ai,1 ∪ Ai,2), (Bi,1 ∪Bi,2)) is

the union of two copies of Qn−3, named Gi,1 and Gi,2 and a perfect matching between

them. Color each copy Gi like the given coloring in Part (ii) of the proof with colors

in [n + 1]. The (n + 1)-coloring of G
3
3
1 is shown in Figure 1. Now, we are going to

recolor some t-vertices and i-vertices of copies G2, G3 and G4 and then color the

remain uncolored vertices.

• Color G
3
3
2,1 and G

3
3
2,2 as same as coloring of G

3
3
1,2 and G

3
3
1,1, repectively. Due

to this coloring, for i > 1 and each edge e = {v, v′} ∈ Fi ⊆ E(G2) we have
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A1,1

B1,1

S1,1 S1,2 S1,n−2

n

n+ 1

n− 1

1

2

2

1

n− 1

2

n− 1

n− 2

1

2

n− 2

G1,1

S′1,1 S′1,2 S′1,n−2

n

n+ 1

n− 1

1

2

2

1

n− 1

2

n− 1

n− 2

1

2

n− 2

G1,2

A1,2

B1,2

n− 1

1
n n+ 1

G1

Figure 1. (n + 1)-coloring of G
3
3
1 .

c((v, v′)) = n and c((v′, v)) = n + 1, where Fi is the edge set defined in the

proof of Part (ii). Also if v ∈ (S2,1 ∩ A2,1) ∪ (S′2,2 ∩ A2,2), then c(v) = n and if

v ∈ (S2,1 ∩B2,1) ∪ (S′2,1 ∩B2,2), then c(v) = n+ 1. Now, for i > 1 and an edge

e = {v, v′} ∈ Fi ⊆ E(G2), change the color of two i-vertices (v, v′) and (v′, v)

to n+ 2 and n+ 3. Also recolor t-vertices v ∈ (S2,1 ∩ A2,1) ∪ (S′2,1 ∩ A2,2) and

v ∈ (S2,1 ∩B2,1)∪ (S′2,1 ∩B2,2) with colors n+ 2 and n+ 3, respectively. Color

of some i-vertices and t-vertices of G
3
3
2 are shown in Figure 2.

• First, color G
3
3
3,1 and G

3
3
3,2 as same as coloring of G

3
3
1,2 and G

3
3
1,1, repectively.

Then, for e = {v, v′} ∈ Fi and i > 1, recolor to i-vertices (v, v′) and (v′, v) with

colors n + 1 and n, respectively. Also, recolor the t-vertices of (S3,1 ∩ A3,1) ∪
(S′3,1∩A3,2) and (S3,1∩B3,1)∪(S′3,1∩B3,2) with colors n+1 and n, respectively.

• First, color G
3
3
4,1 and G

3
3
4,2 as same as coloring of G

3
3
1,2 and G

3
3
1,1, repectively.

Then, for e = {v, v′} ∈ Fi and i > 1, recolor to i-vertices (v, v′) and (v′, v)

with colors n + 2 and n + 3, respectively. Also recolor the t-vertices of (S4,1 ∩
A4,1)∪ (S′4,1 ∩A4,2) and (S4,1 ∩B4,1)∪ (S′4,1 ∩B4,2) with colors n+ 3 and n+ 2,

respectively.

The only uncolored vertices of Qn are all i-vertices on the edges between 4 copies

G1, . . . , G4. To color these i-vertices do as follows. Note that, the indices are in

module 4.

• For 1 ≤ i ≤ 4 if v ∈ Si,1 ∩Ai,1 and u ∈ Si+1,1 ∩Ai+1,1, then color two i-vertices

(v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in

Si+1,1 ∩Bi+1,1 and β is the color of all t-vertices in Si,1 ∩Bi,1.

• For 1 ≤ i ≤ 4 if v ∈ Si,1 ∩Bi,1 and u ∈ Si+1,1 ∩Bi+1,1, then color two i-vertices

(v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in

Si+1,1 ∩Ai+1,1 and β is the color of all t-vertices in Si,1 ∩Ai,1.



M. Mozafari-Nia, M.N. Iradmusa 75

A2,1

B2,1

S2,1 S2,2 S2,n−2

n+ 2

n+ 3

n− 1

12

2

1

n− 1

2

n− 1

n− 2

1

2

n− 2

G2,1

S′2,1 S′2,2 S′2,n−2

n+ 2

n+ 3
n− 1

1

2

2 1

n− 1

2

n− 1

n− 2

1

2

n− 2

G2,2

A2,2

B2,2

n− 1
1

n+ 2

n+ 3

G2

A3,1

B3,1

S3,1 S3,2 S3,n−2

n

n+ 1

n− 1

1

2

2

1

n− 1

2

n− 1

n− 2

1

2

n− 2

G3,1

S′3,1 S′3,2 S′3,n−2

n

n+ 1

n− 1

1

2

2

1

n− 1

2

n− 1

n− 2

1

2

n− 2

G3,2

A3,2

B3,2

n− 1

1

n
n+ 1

G3

A4,1

B4,1

S4,2 S4,2 S4,n−2

n+ 3

n+ 2

n− 1

12

2

1

n− 1

2

n− 1

n− 2

1

2

n− 2

G4,1

S′4,1 S′4,2 S′4,n−2

n+ 3

n+ 2
n− 1

1

2

2 1

n− 1

2

n− 1

n− 2

1

2

n− 2

G4,2

A4,2

B4,2

n− 1
1

n+ 2

n+ 3

G4

Figure 2. (n + 3)-coloring of G
3
3
2 , G

3
3
3 and G

3
3
4

• For 1 ≤ i ≤ 4 if v ∈ S′i,1 ∩Ai,2 and u ∈ S′i+1,1 ∩Ai+1,2, then color two i-vertices

(v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in

S′i+1,1 ∩Bi+1,2 and β is the color of all t-vertices in S′i,1 ∩Bi,2.

• For 1 ≤ i ≤ 4 if v ∈ S′i,1 ∩Bi,2 and u ∈ S′i+1,1 ∩Bi+1,2, then color two i-vertices
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(v, u) and (u, v) with colors α and β, where α is the color of all t-vertices in

S′i+1,1 ∩Ai+1,2 and β is the color of all t-vertices in S′i,1 ∩Ai,2.

• For j > 1 and 1 ≤ i ≤ 4 if v ∈ Si,j ∩Ai,1 and u ∈ Si+1,j ∩Ai+1,1, then color two

t-vertices (v, u) and (u, v) as same as t-vertices c((u′, u)) and c((v′, v)), where

u′ ∈ S′i+1,j ∩Bi+1,2 and v′ ∈ S′i,j ∩Bi,2.

• For j > 1 and 1 ≤ i ≤ 4 if v ∈ Si,j ∩Bi,1 and u ∈ Si+1,j ∩Bi+1,1, then color two

t-vertices (v, u) and (u, v) as same as t-vertices c((u′, u)) and c((u, u′)), where

u′ ∈ S′i+1,j ∩Ai+1,2 and v′ ∈ S′i,j ∩Ai,2.

• For j > 1 and 1 ≤ i ≤ 4 if v ∈ S′i,j ∩Ai,2 and u ∈ S′i+1,j ∩Ai+1,2, then color two

t-vertices (v, u) and (u, v) as same as t-vertices c((u′, u)) and c((v′, v)), where

u′ ∈ Si+1,j ∩Bi+1,1 and v′ ∈ Si,j ∩Bi,1.

• For j > 1 and 1 ≤ i ≤ 4 if v ∈ S′i,j ∩Bi,2 and u ∈ S′i+1,j ∩Bi+1,2, then color two

t-vertices (v, u) and (u, v) as same as t-vertices c((u′, u)) and c((u, u′)), where

u′ ∈ Si+1,j ∩Ai+1,1 and v′ ∈ Si,j ∩Ai,1.

We can check that each color class is an independent set and the given coloring is a

proper (n+ 3)-coloring of Q
3
3
n . �
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[2] P. Gregor, B. Lužar, and R. Soták, On incidence coloring conjecture in cartesian

products of graphs, Discrete Appl. Math. 213 (2016), 93–100

https://doi.org/10.1016/j.dam.2016.04.030.

[3] M. Mozafari-Nia and M. Nejad Iradmusa, A note on coloring of 3
3 -power of sub-

quartic graphs, Australas. J. Combin. 79 (2021), no. 3, 454–460.

[4] , Simultaneous coloring of vertices and incidences of graphs, Australas. J.

Combin. 85 (2023), no. 3, 287–307.

[5] , Simultaneous coloring of vertices and incidences of outerplanar graphs,

Electron. J. Graph Theory Appl. 11 (2023), no. 1, 245–262

https://dx.doi.org/10.5614/ejgta.2023.11.1.20.



M. Mozafari-Nia, M.N. Iradmusa 77

[6] M. Nejad Iradmusa, On colorings of graph fractional powers, Discrete Math. 310

(2010), no. 10–11, 1551–1556

https://doi.org/10.1016/j.disc.2010.01.017.

[7] , A short proof of 7-colorability of 3
3 -power of sub-cubic graphs, Iran. J.

Sci. Technol. Trans. A Sci. 44 (2020), no. 1, 225–226

https://doi.org/10.1007/s40995-020-00819-1.

[8] K.J. Pai, J.M. Chang, J.S. Yang, and R.Y. Wu, Incidence coloring on hypercubes,

Theoret. Comput. Sci. 557 (2014), 59–65

https://doi.org/10.1016/j.tcs.2014.08.017.

[9] P.K. Sun, Incidence coloring of regular graphs and complement graphs, Taiwanese

J.M. 16 (2012), no. 6, 2289–2295

https://doi.org/10.11650/twjm/1500406852.

[10] F. Wang and X. Liu, Coloring 3-power of 3-subdivision of subcubic graph, Discrete

Math. Algorithms Appl. 10 (2018), no. 3, Article ID: 1850041

https://doi.org/10.1142/S1793830918500416.


	Introduction
	Proof of the main theorems
	References

