[2] S. Alikhani, D. Bakhshesh, H. Golmohammadi, and E.V. Konstantinova, Connected coalitions in graphs, Discuss. Math. Graph Theory, 44 (2024), no. 4, 1551–1566.
https://doi.org/10.7151/dmgt.2509
[5] J. Barát and Z.L. Blázsik, General sharp upper bounds on the total coalition number, Discuss. Math. Graph Theory, 44 (2024), no. 4, 1567–1584.
https://doi.org/10.7151/dmgt.2511
[9] W.J. Desormeaux, T.W. Haynes, and M.A. Henning, Partitioning the vertices of a cubic graph into two total dominating sets, Discrete Appl. Math. 223 (2017), 52–63.
https://doi.org/10.1016/j.dam.2017.01.032
[12] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Upper bounds on the coalition number, Austral. J. Combin 80 (2021), no. 3, 442–453.
[13] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Coalition graphs of paths, cycles, and trees, Discuss. Math. Graph Theory 43 (2023), no. 4, 931–946.
https://doi.org/10.7151/dmgt.2416
[15] T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, CRC press, 2013.
[16] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Domination in Graphs: Core Concepts, Springer, 2023.
[17] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer, 2013.
[19] B. Zelinka, On domatic numbers of graphs, Math. Slovaca 31 (1981), no. 1, 91–95.
[20] B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983), no. 2, 145–147.
[21] B. Zelinka, Total domatic number and degrees of vertices of a graph, Math. Slovaca 39 (1989), no. 1, 7–11.