[1] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia, 1999.
[2] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
[3] B. Courcelle, The monadic second-order logic of graphs. i. Recognizable sets of finite graphs, Inf. comput. 85 (1990), no. 1, 12–75.
[4] P.A. Dreyer, Applications and variations of domination in graphs, Ph.D. thesis, Rutgers University, New Jersey, 2000.
[5] O. Favaron, H. Karami, R. Khoeilar, and S.M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math. 309 (2009), no. 10, 3447–3451.
[6] S.C. Garc´ıa, A.C. Martínez, and I.G. Yero, Quasi-total Roman domination in graphs, Results Math. 74 (2019), no. 4, 1–18.
[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker Inc., 1998.
[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, CRC press, 1998.
[9] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003), no. 1-3, 101–115.
[10] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire—A new strategy, Discrete Math. 266 (2003), no. 1-3, 239–251.
[11] Michael Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002), no. 2, 325–334.
[12] N. Jafari Rad and L. Volkmann, Roman domination perfect graphs, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 19 (2011), 167–174.
[13] T. Kloks, M. Liedloff, J. Liu, and S.L. Peng, Roman domination in some special classes of graphs, Tech. report, TR-MA-04-01, 2004.
[14] M.-S. Lin and C.-M. Chen, Counting independent sets in tree convex bipartite graphs, Discrete Appl. Math. 218 (2017), 113–122.
[15] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics, Elsevier, 1995.
[16] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585–594.
[17] I. Stewart, Defend the Roman empire!, Sci. Am. 281 (1999), no. 6, 136–138.
[18] R. Uehara and Y. Uno, Efficient algorithms for the longest path problem, International symposium on algorithms and computation, Hong Kong, China, Springer, 2004, pp. 871–883.
[19] D.B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.
[20] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Alg. Disc. Meth. 3 (1982), no. 3, 351–358.