Purwasih, I., Baskoro, E., Assiyatun, H., Suprijanto, D., Baca, M. (2017). The locating-chromatic number for Halin graphs. Communications in Combinatorics and Optimization, 2(1), 1-9. doi: 10.22049/cco.2017.13577

I.A. Purwasih; Edy T. Baskoro; H. Assiyatun; D. Suprijanto; M. Baca. "The locating-chromatic number for Halin graphs". Communications in Combinatorics and Optimization, 2, 1, 2017, 1-9. doi: 10.22049/cco.2017.13577

Purwasih, I., Baskoro, E., Assiyatun, H., Suprijanto, D., Baca, M. (2017). 'The locating-chromatic number for Halin graphs', Communications in Combinatorics and Optimization, 2(1), pp. 1-9. doi: 10.22049/cco.2017.13577

Purwasih, I., Baskoro, E., Assiyatun, H., Suprijanto, D., Baca, M. The locating-chromatic number for Halin graphs. Communications in Combinatorics and Optimization, 2017; 2(1): 1-9. doi: 10.22049/cco.2017.13577

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) be an ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locating coloring of G. The locating-chromatic number of G, denoted by χL(G), is the least number k such that G admits a locating coloring with k colors. In this paper, we determine the locating-chromatic number of Halin graphs. We also give the locating-chromatic number of Halin graphs of double stars.