A spectral analysis of the Schultz index

Document Type : Original paper

Authors

Faculty of Mathematics, Universidad Autónoma de Guerrero, Acapulco, México

Abstract

Topological indices are descriptors that assign a number to each molecular graph, often well correlated to some properties. In particular, the Schultz index has stood out for its high discrimination capacity between different molecular structures, being a key tool in the study of their physicochemical properties. In this paper, we introduce a modification of the classical adjacency matrix making use of the Schultz index, incorporating both the degree of the vertices and the distance between each pair of them. We perform a spectral analysis of this index and identify some of its significant properties. Particularly, we focus on determining upper and lower bounds for the eigenvalues of this matrix, contributing to the understanding of its algebraic structure and its relationship with graph parameters. 

Keywords

Main Subjects


[1] J.J. Aguilar-Alarcon, G. Reyna-Hernandez, J. Romero-Valencia, and O. Rosario-Cayetano, The Schultz index for product graphs, Iran. J. Math. Chem. 13 (2022), no. 1, 1–17. https://doi.org/10.22052/ijmc.2022.243309.1597
[2] S. Ameer Basha, T. Venkategowda Asha, and B. Chaluvaraju, Generalized Schultz and Gutman indices, Iran. J. Math. Chem. 13 (2022), no. 4, 301–316. https://doi.org/10.22052/IJMC.2022.246460.1629
[3] A.T. Balaban and O. Ivanciuc, Historical development of topological indices, Topological indices and related descriptors in QSAR and QSPR, CRC Press, 2000, pp. 31–68.
[4] D. Carlson, Minimax and interlacing thoerems for matrices, Linear Algebra Appl. 54 (1983), 153–172. https://doi.org/10.1016/0024-3795(83)90211-2
[5] Cayley, LVII. on the mathematical theory of isomers, London Edinburgh Philos. Mag. J. Sci. 47 (1874), no. 314, 444–447.
https://doi.org/10.1080/14786447408641058
[6] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts, Cambridge University Press, 2009.
[7] D.M. Cvetković, Graphs and their spectra, Publ. Elektroteh. Fak., Ser. Mat. (1971), no. 354/356, 1–50.
[8] R. Diestel, Graph Theory, Graduate texts in mathematics, Springer Berlin, Heidelberg., 2018.
[9] A.A. Dobrynin and A.A. Kochetova, Degree distance of a graph: A degree analog of the wiener index, J. Chem. Inf. Comput. Sci. 34 (1994), no. 5, 1082–1086.  https://doi.org/10.1021/ci00021a008
[10] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Acad. Sci. Imp. Petropol. 8 (1741), 128–140.
[11] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994), no. 5, 1087–1089.  https://doi.org/10.1021/ci00021a009
[12] F. Harary, Graph Theory, CRC Press., 2018.
[13] K. Hoffman and R.A. Kunze, Linear Algebra, Prentice-Hall, New Jersey, 1971.
[14] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
[15] G. Kirchhoff, Ueber die auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen vertheilung galvanischer ströme geführt wird, Ann. Phys. 148 (1847), no. 12, 497–508. 
[16] F. Li, X. Li, and H. Broersma, Spectral properties of inverse sum indeg index of graphs, J. Math. Chem. 58 (2020), no. 9, 2108–2139. https://doi.org/10.1007/s10910-020-01170-x
[17] J.M. Rodríguez and J.M. Sigarreta, Spectral properties of geometric–arithmetic index, Appl. Math. Comput. 277 (2016), 142–153.  https://doi.org/10.1016/j.amc.2015.12.046
[18] H.P. Schultz, Topological organic chemistry. 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci. 29 (1989), no. 3, 227–228. https://doi.org/10.1021/ci00063a012
[19] N. Trinajstić, Chemical Graph Theory, CRC Press, 2018.
[20] L. Von Collatz and U. Sinogowitz, Spektren endlicher grafen:Wilhelm .Blaschke zum 70. Geburtstag gewidmet, Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg, vol. 21, Springer, 1957, pp. 63–77. https://doi.org/10.1007/BF02941924
[21] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), no. 1, 17–20. https://doi.org/10.1021/ja01193a005