Max-min degree index of a graph and it’s mathematical relation with other topological indices

Document Type : Original paper

Authors

Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India

Abstract

Among the defined 148 discrete Adriatic indices, the max-min degree index is one. Vuki{'c}evi'c proposed some problems related to the upper and lower bounds on the max-min degree index. Here we determine the max-min degree index of some special graphs. We characterize the graphs extremal with respect to max-min degree index over connected graphs, trees and unicyclic graphs with a given number of vertices. Finally, we establish its mathematical relation with other topological indices.

Keywords

Main Subjects


[1] S. Afridi, M. Yasin Khan, and G. ALi, On generalized topological indices for some special graphs, J. Math. 2022 (2022), no. 1, Article ID: 1369490.  https://doi.org/10.1155/2022/1369490
[2] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987), 187–197.
[3] B. Furtula, K.C. Das, and I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, Int. J. Quantum Chem. 118  (2018), no. 17, Article ID: e25659. https://doi.org/10.1002/qua.25659
[4] N. Ghanbari and S. Alikhani, Sombor index of certain graphs, Iran. J. Math. Chem. 12 (2021), no. 1, 27–37. https://doi.org/10.22052/ijmc.2021.242106.1547
[5] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), no. 4,  351–361. http://dx.doi.org/10.5562/cca2294
[6] I. Gutman, M. Togan, A. Yurttas, A.S. Cevik, and I.N. Cangul, Inverse problem for sigma index, MATCH Commun. Math. Comput. Chem. 79 (2018), no. 2,  491–508.
[7] I. Gutman, N. Trinajstić, and C.F. Wilcox, Graph theory and molecular orbitals. XII. acyclic polyenes, J. Chem. Phys. 62 (1975), no. 9, 3399–3405.  https://doi.org/10.1063/1.430994
[8] S. He, H. Chen, and H. Deng, The vertex–degree–based topological indices of fluoranthene–type benzenoid systems, MATCH Commun. Math. Comput. Chem.  78 (2017), no. 2, 431–458.
[9] M. Imran, S. Hafi, W. Gao, and M.R. Farahani, On topological properties of sierpinski networks, Chaos Solit. Fractals 98 (2017), 199–204.  https://doi.org/10.1016/j.chaos.2017.03.036
[10] B. Khanra and S. Das, Euler sombor index of trees, unicyclic and chemical graphs, MATCH Commun. Math. Comput. Chem. 94 (2025), no. 2, 525–548.  https://doi.org/10.46793/match.94–2.525K
[11] B. Khanra and S. Das, Extremal GQ index of trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. In Press (2025).
[12] J. Liu, R. Zheng, J. Chen, and B. Liu, The extremal general atom-bond connectivity indices of unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 81 (2019), no. 2, 345–360.
[13] Y. Ma, Y. Shi, I. Gutman, and B. Furtula, From the connectivity index to various Randić-type descriptors, MATCH Commun. Math. Comput. Chem. 80 (2018), no. 1, 85–106.
[14] E.D. Molina, J.M. Rodríguez, J.L. Sánchez, and J.M. Sigarreta, Inverse degree index: exponential extension and applications, J. Math. Chem. 61 (2023), no. 5, 1217–1237.   https://doi.org/10.1007/s10910-023-01453-z
[15] D. Vukičević, Bond additive modelling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010), no. 3, 261–273.
[16] D. Vukičević and M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010), no. 3, 243–260.