[1] J.F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Springer Science & Business Media, New York, 2013.
[4] J. Chen, E. Köbis, and J.C. Yao, Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints, J. Optim. Theory Appl. 181 (2019), no. 2, 411–436.
https://doi.org/10.1007/s10957-018-1437-8
[7] T.D. Chuong, Robust optimality and duality in multiobjective optimization problems under data uncertainty, SIAM J. Optim. 30 (2020), no. 2, 1501–1526.
https://doi.org/10.1137/19M1251461
[8] F.H. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics, 1990.
[9] S. Dempe, Foundations of Bilevel Programming, Springer Science & Business Media, New York, 2002.
[11] S. Dempe, Bilevel optimization: Theory, algorithms, applications and a bibliography, Bilevel Optimization: Advances and Next Challenges (S. Dempe and A. Zemkoho, eds.), vol. 161, Springer International Publishing, Cham, 2020, pp. 581–672.
[13] N.A. Gadhi, K. Hamdaoui, and M. El idrissi, Sufficient optimality conditions and duality results for a bilevel multiobjective optimization problem via a -reformulation, Optimization 69 (2020), no. 4, 681–702.
https://doi.org/10.1080/02331934.2019.1625901
[17] J. Goseling and M. Lopuhaä-Zwakenberg, Robust optimization for local differential privacy, 2022 IEEE Int. Sym. Inf. Theory (ISIT) (Espoo, Finland), 2022, pp. 1629–1634.
[18] N.C. Hung, T.D. Chuong, and N.L.H. Anh, Optimality and duality for robust optimization problems involving inters- ection of closed sets, J. Optim. Theory Appl. 202 (2024), no. 2, 771–794.
https://doi.org/10.1007/s10957-024-02447-w
[19] V. Jeyakumar, G. Li, and G.M. Lee, Robust duality for generalized convex programming problems under data uncertainty, Nonlinear Anal. Theory Methods Appl. 75 (2012), no. 3, 1362–1373.
https://doi.org/10.1016/j.na.2011.04.006
[21] F. Lin, X. Fang, and Z. Gao, Distributionally robust optimization: A review on theory and applications, Numer. Algebra Control Optim. 12 (2022), no. 1, 159–212.
http://dx.doi.org/10.3934/naco.2021057
[22] P. Mehlitz, L.I. Minchenko, and A.B. Zemkoho, A note on partial calmness for bilevel optimization problems with linearly structured lower level, Optim. Lett. 15 (2021), no. 4, 1277–1291.
https://doi.org/10.1007/s11590-020-01636-6
[23] J. V. Outrata, On the numerical solution of a class of Stackelberg problems, Zeitschrift f¨ur Operations Research 34 (1990), no. 4, 255–277.
https://doi.org/10.1007/BF01416737
[25] S. Saini, N. Kailey, and I. Ahmad, Optimality conditions and duality results for a robust bi-level programming problem, RAIRO Oper. Res. 57 (2023), no. 2, 525–539.
https://doi.org/10.1051/ro/2023026
[26] S. Wu and S. Chen, A bi-level algorithm for product line design and pricing, 2014 IEEE International Conference on Industrial Engineering and Engineering Management, 2014, pp. 14–18.
[27] J. Xiao, Y. Cai, Y. He, Y. Xie, and Z. Yang, A dual-randomness bi-level interval multi-objective programming model for regional water resources management, J. Contam. Hydrol. 241 (2021), 103816.
https://doi.org/10.1016/j.jconhyd.2021.103816.
[30] T. Zhang, Z. Chen, Y. Zheng, and J. Chen, An improved simulated annealing algorithm for bilevel multiobjective programming problems with application, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3672–3685.