On harmonic complex Narayana-Lucas sequences and harmonic hybrid Narayana-Lucas sequences

Document Type : Original paper

Authors

Srinivasa Ramanujan Department of Mathematics, Central University of Himachal Pradesh, Shahpur Parisar, Shahpur (HP), 176206 India

Abstract

In this paper, we begin by introducing the concept of complex Narayana-Lucas sequence. Then we proceed to discuss the concept of harmonic number within the framework of complex Narayana-Lucas sequence. Furthermore, we introduce hybrid numbers in the context of harmonic Narayana-Lucas sequence, accompanied by a set of fundamental definitions and theorems pertaining to these sequence. Additionally, we present several mathematical properties, such as generating functions, Binet formulas, and other significant identities related to these newly introduced sequence. Finally, we also provide source Maple 13 code to verify the occurrence of these newly introduced sequence.

Keywords

Main Subjects


[1] J.P. Allouche and T. Johnson, Narayana’s cows and delayed morphisms, Journées d’Informatique Musicale, 1996.
[2] M. Bahşı, On the norms of r-circulant matrices with the hyperharmonic numbers, J. Math. Inequalities 10 (2016), no. 2, 445–458.    https://doi.org/10.7153/jmi-10-35
[3] M. Bahşi and S. Solak, On the matrices with harmonic numbers, Gazi Univ. J. Sci. 23 (2010), no. 4, 445–448.
[4] B.C. Berndt, Ramanujan’s Theory of Divergent Series, Ramanujan’s Notebooks: Part I, Springer, New York, 1985, pp. 133–149. 
[5] B.C. Berndt, Ramanujan’s Theory of Prime Numbers, Ramanujan’s Notebooks: Part IV, Springer, New York, 1994, pp. 111–137.
[6] L. Carlitz, Weighted Stirling numbers of the first and second kind-I, Fibonacci Quart. 18 (1980), no. 2, 147–162. https://doi.org/10.1080/00150517.1980.12430168
[7] P. Catarino, On k-pell hybrid numbers, J. Discrete Math. Sci. Cryptogr. 22 (2019), no. 1, 83–89. https://doi.org/10.1080/09720529.2019.1569822
[8] M.W. Coffey and N. Lubbers, On generalized harmonic number sums, Appl. Math. Comput. 217 (2010), no. 2, 689–698.
https://doi.org/10.1016/j.amc.2010.06.006
[9] ¨O. Deveci, S. Hulku, and A.G. Shannon, On the co-complex-type k-Fibonacci numbers, Chaos Solit. Fractals 153 (2021), Article ID: 111522.  https://doi.org/10.1016/j.chaos.2021.111522
[10] Ö. Deveci and A.G. Shannon, The complex-type k-Fibonacci sequences and their applications, Commun. Algebra 49 (2021), no. 3, 1352–1367.  https://doi.org/10.1080/00927872.2020.1834573
[11] S. Falcon, On the k-Lucas numbers, Int. J. Contemp. Math. Sci. 6 (2011), no. 21, 1039–1050.
[12] R.L. Graham, D.E. Knuth, and O. Patashnik, Fibonacci and Lucas Numbers with Applications, Volume 2, Addison-Wesley Professional, 1994.
[13] A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Mon. 70 (1963), no. 3, 289–291.
[14] E. Karaca and F. Yilmaz, Some characterizations for harmonic complex fibonacci sequences, International Conference on Mathematics and its Applications in Science and Engineering (Cham) (F. Yilmaz, Araceli Queiruga-Dios, M.J. San-
tos Sánchez, D. Rasteiro, V. Gayoso Martínez, and J. Martín Vaquero, eds.), Springer International Publishing, 2021, pp. 159–165.
[15] C. Kızılateş, A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos Solit. Fractals 130 (2020), Article ID: 109449.  https://doi.org/10.1016/j.chaos.2019.109449
[16] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 2, John Wiley & Sons, 2019.
[17] M. Özdemir, Introduction to hybrid numbers, Adv. Clifford Algebras 28 (2018),  no. 1, 1–32. https://doi.org/10.1007/s00006-018-0833-3
[18] S. Petroudi, M. Pirouz, and A. Özko¸c, The Narayana polynomial and Narayana hybrinomial sequences, Konuralp J. Math. 9 (2021), no. 1, 90–99.  
[19] D. Quadling, Ramanujan’s notebooks, by bruce c. berndt. part 1. pp 357. dm188. 1985. isbn 3-540-96110-0 (springer), Math. Gaz. 70 (1986), no. 451, 84–85. https://doi.org/10.2307/3615877
[20] Y. Soykan, On generalized Narayana numbers, Int. J. Adv. Appl. Math. Mech. 7 (2020), no. 3, 43–56.
[21] A. Szynal-Liana, The Horadam hybrid numbers, Discus. Math., Gen. Algebra Appl. 38 (2018), no. 1, 91–98. http://dx.doi.org/10.7151/dmgaa.1287
[22] A. Szynal-Liana and I. Włoch, On Pell and Pell- Lucas hybrid numbers, Comment. Math. 58 (2018), no. 1-2, 11–17.
http://dx.doi.org/10.14708/cm.v58i1-2.6364
[23] A. Szynal-Liana and I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers, Ann. Math. Sil. 33 (2019), 276–283.  https://doi:10.2478/amsil-2018-0009
[24] N. Tuglu, C. Kızılateş, and S. Kesim, On the harmonic and hyperharmonic Fibonacci numbers, Adv. Differ. Equ. 2015 (2015), no. 1, Article ID: 297.  https://doi.org/10.1186/s13662-015-0635-z
[25] I.J. Zucker, Ramanujan’s notebooks: Part 2, edited by bruce c. berndt. pp 359. dm 168. 1989. isbn 3-540-96794-x (springer), Math. Gaz. 74 (1990), no. 467, 95–97.  https://doi.org/10.2307/3618899