Strong global distribution center of graphs

Document Type : Original paper

Authors

Department of Basic Sciences, Shahid Rajaee Teacher Training University, P.O. Box 16785-163, Tehran, Iran

Abstract

Let G=(V,E) be a graph. A strong global distribution center of G is a dominating set  SV  such that for any vVS, there exists a vertex uN[v]S with the property |N[u]S|>|N[v](VS)|. The strong global distribution center number, gdcs(G), of a graph G is the minimum cardinality of a strong global distribution center of G. In this paper, we introduce the concept of strong global distribution center. We give some bounds on the gdcs(G) for general graphs and classify graphs with extremal values of gdcs(G). Also, we compute the strong global distribution center number for some families of graphs and  study this parameter for some families of graph products.

Keywords

Main Subjects


[1] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, Chapman & Hall London, 1996.
[2] W.J. Desormeaux, T.W. Haynes, S.T. Hedetniemi, and C. Moore, Distribution centers in graphs, Discrete Appl. Math. 243 (2018), 186–193.  https://doi.org/10.1016/j.dam.2018.02.009
[3] R. Durgut, H. Kutucu, and T. Turaci, Global distribution center number of some graphs and an algorithm, RAIRO Oper. Res. 53 (2019), no. 4, 1217–1227.  https://doi.org/10.1051/ro/2018119
[4] R.H. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, CRC press Boca Raton, 2011.
[5] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Global defensive alliances in graphs, Electron. J. Combin. 10 (2003), Article Number: R47  https://doi.org/10.37236/1740
[6] J.A. Rodríguez-Velázquez and J.M. Sigarreta, Global defensive k-alliances in graphs, Discrete Appl. Math. 157 (2009), no. 2, 211–218.  https://doi.org/10.1016/j.dam.2008.02.006