[1] M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 37 (2008), no. 2, 89–95.
[4] P. Catarino, H. Campos, and P. Vasco, On the Mersenne sequence, Ann. Math. Inform. 46 (2016), 37–53.
[6] A. Daşdemir, On the norms of Toeplitz matrices with the Pell, Pell-Lucas and modified Pell numbers, J. Eng. Technol. Appl. Sci. 1 (2016), no. 2, 51–57.
https://doi.org/10.30931/jetas.283838
[8] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
[9] G.Ö. Kızılırmak, On some identities and Hankel matrices norms involving new defined generalized modified Pell numbers, J. New Results Sci. 10 (2021), no. 3, 60–66.
https://doi.org/10.54187/jnrs.989508
[10] M. Kumari, K. Prasad, and H. Mahato, On the norms of Toeplitz and Hankel matrices with balancing and Lucas-balancing numbers, Advanced Mathematical Techniques in Computational and Intelligent Systems, CRC Press, 2023, pp. 196–210.
[11] M. Kumari, K. Prasad, J. Tanti, and E. Özkan, On the properties of -circulant matrices involving Mersenne and Fermat numbers, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 5, 121–131.
https://doi.org/10.22075/ijnaa.2023.27875.3742
[14] B.J. Olson, S.W. Shaw, C. Shi, C. Pierre, and R.G. Parker, Circulant matrices and their application to vibration analysis, Appl. Mech. Rev. 66 (2014), no. 4, 040803.
https://doi.org/10.1115/1.4027722
[18] N. Saba, A. Boussayoud, and K.V. Kanuri, Mersenne-Lucas numbers and complete homogeneous symmetric functions, J. Math. Comput. Sci. 24 (2021), no. 2, 127–139.
http://dx.doi.org/10.22436/jmcs.024.02.04
[19] S. Shen, On the norms of Toeplitz matrices involving k-Fibonacci and k-Lucas numbers, Int. J. Contemp. Math. Sciences 7 (2012), no. 8, 363–368.
[21] Ş. Uygun, On the bounds for the norms of Toeplitz matrices with the Jacobsthal and Jacobsthal Lucas numbers, J. Eng. Technol. Appl. Sci. 4 (2019), no. 3, 105–114.
https://doi.org/10.30931/jetas.569742
[22] P. Vasco, P. Catarino, H. Campos, A.P. Aires, and A. Borges, -Pell, -Pell-Lucas and modified -Pell numbers: Some identities and norms of Hankel matrices, Int. J. Math. Anal. 9 (2015), no. 1, 31–37.
http://dx.doi.org/10.12988/ijma.2015.411370
[23] A.C. Wilde, Differential equations involving circulant matrices, Rocky Mt. J. Math. 13 (1983), no. 1, 1–13.
[24] Y. Yazlik, N. Yilmaz, and N. Taskara, On the norms of Hankel matrices with the -Jacobsthal and -Jacobsthal Lucas numbers, J. Selcuk Uni. Natural Appl. Sci. 3 (2014), no. 2, 35–42.