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lower and upper bound for the spectral norm of these matrices. Also, the study shows
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we presented rank, eigenvalues, principal minors, and the characteristic polynomial of
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1. Introduction

Let {tn}n∈Z and {hn}n∈Z be infinite sequences, then Toeplitz and Hankel matrices of

order n with the entries tij = ti−j and hij = hi+j−2, respectively, are defined as

Tn =



t0 t−1 t−2 · · · t2−n t1−n
t1 t0 t−1 · · · t3−n t2−n
t2 t1 t0 · · · t4−n t3−n
...

...
...

. . .
...

...

tn−2 tn−3 tn−4 · · · t0 t−1
tn−1 tn−2 tn−3 · · · t1 t0


and Hn =



h0 h1 h2 · · · hn−2 hn−1
h1 h2 h3 · · · hn−1 hn
h2 h3 h4 · · · hn hn+1

...
...

...
. . .

...
...

hn−2 hn−1 hn · · · h2n−4 h2n−3
hn−1 hn hn+1 · · · h2n−3 h2n−2


.

∗ Corresponding Author
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Many researchers have worked on these special matrices involving a recursive sequence

like Fibonacci, Lucas, Pell, balancing numbers, etc. in the last decades and still, it

is of great interest among researchers. For instance, Akbulak and Bozkurt [1] have

obtained the norms for the Toeplitz matrices with entries from Fibonacci and Lucas

numbers. Then S. Shen [19] and A. Daşdemir [6] extended this study to the k-

Fibonacci and k-Lucas numbers and Pell and Pell-Lucas numbers, respectively. Also,

Solak and Bahsi [20] obtained the norms and bounds for the spectral norm of the

Hankel matrices involving the Fibonacci and Lucas numbers. This study has been

extended for other number sequences, one can see [3, 9, 10, 15, 21, 22, 24]. These

types of special matrices have wide applications in various areas like image processing,

vibration analysis, cryptography etc. [14, 16, 23].

In this study, we consider the Mersenne numbers (2n− 1) and Fermat numbers (2n +

1) as our sequence of entries. The Mersenne and Fermat numbers [17] are special

numbers that intrigued mathematicians for centuries. A recurrence relation for these

numbers was provided by A.F. Horadam in 1979 [7]. Recently, the recurrence relation

and some curious properties of these numbers were revisited by Catarino et al. [4].

Definition 1. For n ≥ 0, the Mersenne numbers {Mn} and Fermat numbers {Rn} are
defined by the same relation

Zn = 3Zn−1 − 2Zn−2 (1.1)

with initial assumptions M0 = 0, M1 = 1 and R0 = 2, R1 = 3.

The Binet’s formulae for these numbers is given as

Mn = 2n − 1 (1.2)

and Rn = 2n + 1. (1.3)

Note that the sequence (1.1) can be extended in the negative direction too. So, the

Binet’s formulae in negative subscript is given by M−n = (1 − 2n)/2n and R−n =

(1 + 2n)/2n.

After the work of Saba et al. [18], the name ‘Mersenne-Lucas numbers’ is also used

for the Fermat numbers. A study on ‘k-Mersenne-Lucas numbers’ is reported by

Chelgham and Boussayoud [5] which generalizes Mersenne-Lucas numbers.

Now, we give some preliminaries for different norms of any rectangular matrix A =

[aij ] ∈ Rm×n. Maximum absolute column sum (1-norm) and row sum (∞-norm)

norms [25] for the matrix A are given as

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | and ‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |, respectively. (1.4)
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The Euclidean (Frobenius) and spectral norm ([8], Ch-5) for matrix A are defined as

‖A‖E =

√√√√ m∑
i=1

n∑
j=1

|aij |2 and ‖A‖2 =
√

max
1≤i≤n

µi(A∗A), respectively, (1.5)

where µi(A
∗A) denotes the eigenvalues of A∗A and A∗ is the conjugate transpose of

A. And for matrix A, these norms are related as

1√
n
‖A‖E ≤ ‖A‖2 ≤ ‖A‖E . (1.6)

Lemma 1. [12] Let A = [aij ] ∈ Mm×n(C), B = [bij ] ∈ Mm×n(C) be two matrices and C
be the Hadamard product of A and B (i.e C = A ◦B), then we have

‖C‖2 ≤ u(A)ν(B), (1.7)

where u(A) = max1≤i≤m

√∑n
j=1|aij |2 and ν(B) = max1≤j≤n

√∑m
i=1|bij |2.

This study aims to investigate the properties of Hankel and Toeplitz matrices defined

with the entries from Mersenne or Fermat sequences. We present matrix norms,

spread and obtain the lower and upper bounds for the spectral norm of these matrices.

Further, we use the beautiful property of Mersenne numbers to check about the

singularity of these matrices and present rank, eigenvalues, principal minors and the

characteristic polynomial of them explicitly.

2. Hankel and Toeplitz matrices with Mersenne sequence

This section starts with partial sum formulae for Mersenne and Fermat numbers that

will be used to establish our main results. Further, we discuss different norms and

bounds for the spectral norm on these matrices.

2.1. Partial sum formulae

Lemma 2. [11] The partial sum formulae for the squares of these numbers are

n∑
j=0

M2
j =

M2n+2 − 6Mn+1 + 3(n+ 1)

3
=

4n+1 + 8

3
− 2n+2 + n

and

n∑
j=0

R2
j =

R2n+2 + 6Rn+1 + 3n− 11

3
=

22n+2 − 4

3
+ 2n+2 + n.

Proof. These identities can be easily verified using Binet’s formula (1.2) and (1.3).
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Lemma 3. The partial sum of the squared terms of these numbers with negative subscripts
are given by

n−1∑
j=0

M2
−j =

22−2nM2n − 22−n3Mn + 3n

3
and

n−1∑
j=0

R2
−j =

22−2nR2n + 22−n3Rn + 3n− 23−2n(1 + 2n3)

3
.

Proof. The proof follows from the Binet’s formulae of Mersenne and Fermat numbers

with negative subscripts which are (1− 2n)/2n and (1 + 2n)/2n, respectively.

Lemma 4. For fixed m ∈ Z, the finite sum formulae for terms in arithmetic indices are

n−1∑
k=0

M2
m+k =

22mM2n − 6Mn2m + 3n

3
and

n−1∑
k=0

R2
m+k =

22mR2n + 6Rn2m − 2m+1(2m + 6) + 3n

3
.

Proof. Using the Binet’s formula for Mersenne numbers, we write

n−1∑
k=0

M2
m+k =

n−1∑
k=0

(2m+k − 1)2 =

n−1∑
k=0

(22(m+k) + 1− 2m+k+1)

= 22m
(

22n − 1

22 − 1

)
+ n− 2m+1

(
2n − 1

2− 1

)
=

22mM2n − 6Mn2m + 3n

3
.

The second identity appears by a similar argument using Binet’s formula (1.3).

2.2. Matrix norms

For n ≥ 2, let MHn = (mij)
n
i,j=1 with mij = Mi+j−2 and RHn = (rij)

n
i,j=1 with

rij = Ri+j−2 be the n×n Mersenne and Fermat Hankel matrices, respectively. Then

these matrices have the following structure:

MHn =



M0 M1 M2 · · · Mn−2 Mn−1
M1 M2 M3 · · · Mn−1 Mn

M2 M3 M4 · · · Mn Mn+1

...
...

...
. . .

...
...

Mn−2 Mn−1 Mn · · · M2n−4 M2n−3
Mn−1 Mn Mn+1 · · · M2n−3 M2n−2


and RHn =



R0 R1 R2 · · · Rn−2 Rn−1
R1 R2 R3 · · · Rn−1 Rn

R2 R3 R4 · · · Rn Rn+1

...
...

...
. . .

...
...

Rn−2 Rn−1 Rn · · · R2n−4 R2n−3
Rn−1 Rn Rn+1 · · · R2n−3 R2n−2


.

Now, we give the norms ‖.‖1, ‖.‖∞ and the lower and upper bounds for the spectral

norm of these matrices.
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Observation 1. The maximum absolute column sum norm (‖.‖1) and row sum norm
(‖.‖∞) for Mersenne Hankel matrices MHn are

‖MHn‖1 = ‖MHn‖∞ = M2n−1 −Mn−1 − n.

Proof. For matrix MHn, maxj

∑n
i=1|mij | = maxi

∑n
j=1|mij | =

∑2n−2
k=n−1Mk. And

thus using (1.4) and sum identity
∑n−1

k=0 Mk = Mn − n [4, Prop. 2.5], we have the

required result.

Theorem 2. The maximum absolute column and row sum norm for the matrix RHn are
given as

‖RHn‖1 = ‖RHn‖∞ = R2n−1 −Rn−1 + n.

Proof. The proof follows from (1.4) and using sum identity
∑n−1

k=0 Rk = Rn +(n−2)

[5, Theorem 3.3].

Before proceeding to the next theorem, it is worthful to give the Euclidean norm

of Mersenne Hankel matrices that will be useful to obtain the lower bound for the

spectral norm.

Theorem 3. The Euclidean norm of the Mersenne Hankel matrices is

‖MHn‖E =
(M2

2n − 18M2
n + 9n2

9

)1/2
. (2.1)

Proof. By the definition of the Euclidean norm (1.5), we have

‖MHn‖2E =

n∑
i=1

n∑
j=1

|mij |2 =

n−1∑
k=0

M2
k +

n∑
k=1

M2
k +

n+1∑
k=2

M2
k + ...+

2n−2∑
k=n−1

M2
k

=

n−1∑
k=0

M2
k +

n−1∑
k=0

M2
k+1 +

n−1∑
k=0

M2
k+2 + ...+

n−1∑
k=0

M2
k+(n−1)

=

n−1∑
k=0

n−1∑
s=0

M2
k+s =

n−1∑
k=0

22kM2n − 2k6Mn + 3n

3
(using Lemma 4)

=
M2n

3

n−1∑
k=0

22k − 6Mn

3

n−1∑
k=0

2k +

n−1∑
k=0

n =
M2

2n − 18M2
n + 9n2

9
.

Thus,

‖MHn‖E =
(M2

2n − 18M2
n + 9n2

9

)1/2
.
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Theorem 4. The lower and upper bound for the spectral norm of the Mersenne Hankel
matrices are

‖MHn‖2 ≥
√
M2

2n − 18M2
n + 9n2

9n
,

‖MHn‖2 ≤
1

3

√
(22n−2M2n − 3Mn2n + 3n)(22n−2M2n−2 − 2n3Mn−1 + 3n).

Proof. From Theorem 3 and inequality (1.6), we have

‖MHn‖2 ≥
√
M2

2n − 18M2
n + 9n2

9n
.

In order to obtain the upper bound for the spectral norm, we use Lemma 1, where the

matrix MHn is written as the Hadamard product of two matrices X and Y , defined

as:

X = [xij ] =

{
xij = 1, i < j

xij = Mi+j−2, i ≥ j
and Y = [yij ] =

{
yij = Mi+j−2, i < j

yij = 1, i ≥ j
.

Clearly, MHn = X ◦ Y. Since

u(X) = max
i

√√√√ n∑
j=1

|xij |2 =

√√√√ 2n−2∑
k=n−1

M2
k =

√√√√2n−2∑
k=0

M2
k −

n−2∑
k=0

M2
k ,

using the sum identity from Lemma 2 and the Binet’s formula (1.2), we have

u(X) =

√
M2(2n−1) − 6M(2n−1) + 3(2n− 1)

3
−
M2(n−1) − 6M(n−1) + 3(n− 1)

3

=

√
M2(2n−1) − 6M(2n−1) −M2(n−1) + 6M(n−1) + 3n

3

=

√
22n−2M2n − 2n3Mn + 3n

3

and

ν(Y ) = max
j

√√√√ n∑
i=1

|yij |2 =

√√√√1 +

2n−3∑
k=n−1

M2
k

=

√
1 +

22n−2M2n−2 − 2n3Mn−1 + 3(n− 1)

3

=

√
22n−2M2n−2 − 2n3Mn−1 + 3n

3
.

Hence from Lemma 1, we get

‖MHn‖2 ≤u(X)ν(Y ) =
1

3

√
(22n−2M2n − 3Mn2n + 3n)(22n−2M2n−2 − 2n3Mn−1 + 3n).
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Theorem 5. The Euclidean norm of the Fermat Hankel matrices is

‖RHn‖E =
(R2

2n + 18R2
n − 4R2n − 72Rn + 9n2 + 76

9

)1/2
.

Proof. The proof is very similar to Theorem 3 using Lemma 4.

Theorem 6. The lower and upper bound for the spectral norm of the Fermat Hankel
matrices are

‖RHn‖2 ≥
(R2

2n + 18R2
n − 4R2n − 72Rn + 9n2 + 76

9n

)1/2
,

‖RHn‖2 ≤
1

3

(
(22n−2M2n + 2n3Mn + 3n)(22n−2M2n−2 + 2n3Mn−1 + 3n)

)1/2
.

Proof. From Theorem 5 and the inequality 1√
n
‖RHn‖E ≤ ‖RHn‖2, the lower bound

is given as

‖RHn‖2 ≥
(R2

2n + 18R2
n − 4R2n − 72Rn + 9n2 + 76

9n

)1/2
.

For the upper bound, the argument is very similar to Theorem 4.

Example 1. Verify the obtained results of matrix norms for the Mersenne and Fermat
Hankel matrices of order 4.

Solution. Here Hankel matrices are

MH4 =


0 1 3 7

1 3 7 15

3 7 15 31

7 15 31 63

 and RH4 =


2 3 5 9

3 5 9 17

5 9 17 33

9 17 33 65

 .
So

‖MH4‖1 = 116, ‖MH4‖∞ = 116 and ‖MH4‖E =
√

6791

‖RH4‖1 = 124, ‖RH4‖∞ = 124 and ‖RH4‖E =
√

7691

which verify the results of ‖.‖1 and ‖.‖∞. Now for ‖.‖E , Theorem 3 and 5 give

‖MH4‖E =
(M2

8 − 18M2
4 + 9(4)2

9

)1/2
=
√

6791 = 82.4075 and

‖RH4‖E =
(R2

8 + 18R2
4 − 4R8 − 72R4 + 9(4)2 + 76

9

)1/2
=
√

7691 = 87.6983.

And for ‖.‖2, since the largest eigenvalue of MH4 is (81 +
√

7021)/2 ∼ 82.3957 which

is less than 82.4075 and greater than 41.2037 so it satisfies (1.6). Similarly, the largest

eigenvalue of RH4 is 87.6885 which satisfies (1.6).
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2.3. Toeplitz matrices

For n ≥ 2, the Toeplitz matrices with Mersenne and Fermat numbers are defined as

MTn = (mij)
n
i,j=1 with mij = Mi−j and RTn = (rij)

n
i,j=1 with rij = Ri−j and it

takes the form

MTn =



M0 M−1 M−2 · · · M1−n
M1 M0 M−1 · · · M2−n
M2 M1 M0 · · · M3−n

...
...

...
. . .

...

Mn−2 Mn−3 Mn−4 · · · M−1
Mn−1 Mn−2 Mn−3 · · · M0


and RTn =



R0 R−1 R−2 · · · R1−n
R1 R0 R−1 · · · R2−n
R2 R1 R0 · · · R3−n
...

...
...

. . .
...

Rn−2 Rn−3 Rn−4 · · · R−1
Rn−1 Rn−2 Rn−3 · · · R0


,

The Toeplitz matrices using generalized Mersenne numbers are discussed by Sevda

and Soykan in [2], so here we list some norms properties which we use later to establish

other results like Spread, etc. These results can be proved by modifications of results

from [2] so we omitted the proofs.

The maximum absolute column sum and row sum norm for the matrices MTn and

RTn, respectively, are given by

‖MTn‖1 = ‖MTn‖∞ = Mn − n.
and ‖RTn‖1 = ‖RTn‖∞ = Rn + n− 2.

Theorem 7. The Euclidean norms ‖MTn‖E and ‖RTn‖E of Mersenne (Fermat) Toeplitz
matrices are given by

‖MTn‖E =
(4M2n +M2(1−n) − 36Mn − 18M1−n + 9n2 + 15

9

)1/2
(2.2)

and

‖RTn‖E =
(32R(2n−2) + 144R(n−1) + 2R2(1−n) + 36R1−n + 18n2 − 374

18

)1/2
. (2.3)

Theorem 8. The lower and upper bounds for spectral norm of the Mersenne Toeplitz
and Fermat Toeplitz matrices are

‖MTn‖2 ≥

√
4M2n +M2(1−n) − 36Mn − 18M1−n + 9n2 + 15

9n
,

‖MTn‖2 ≤
1

3

√
(M2(n−1) − 6M(n−1) + 3n)(M2n − 6Mn + 3n),

‖RTn‖2 ≥

√
32R(2n−2) + 144R(n−1) + 2R2(1−n) + 36R1−n + 18n2 − 374

18n
,

‖RTn‖2 ≤
1

3

√
(R2(n−1) + 6R(n−1) + 3n− 14)(R2n + 6Rn + 3n− 14).
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Example 2. The Mersenne and Fermat Toeplitz matrices of order 3 are as follows:

MT3 =

0 −1/2 −3/4
1 0 −1/2
3 1 0

 and RT3 =

2 3/2 5/4
3 2 3/2
5 3 2

 .
Solution. The matrix norms for these matrices are

‖MT3‖1 = 4, ‖MT3‖∞ = 4 and ‖MT3‖E =
√

193/16

‖RT3‖1 = 10, ‖RT3‖∞ = 10 and ‖RT3‖E =
√

977/16,

which verifies the results of ‖.‖1 and ‖.‖∞ for the above matrices. Also from (2.2)

and (2.3),

‖MT3‖E =
(4M6 +M2(−2) − 36M3 − 18M−2 + 9(3)2 + 15

9

)1/2
=
√

193/16 and

‖RT3‖E =
(32R4 + 144R2 + 2R2(−2) + 36R−2 + 18(3)2 − 374

18

)1/2
=
√

977/16

which confirms the given results.

3. Spread, Determinant and Characteristics Polynomials

For a given matrix, the problem of estimation of maximum distance between two

eigenvalues was first noticed by L. Mirsky, who introduced [13] the spread for a

complex matrix (of order n) to solve this problem. The spread of a matrix A ∈
Mn×n(C) where λ1, λ2, ..., λn are eigenvalues of A is defined as

s(A) = max
i,j
|λi − λj |.

The upper bound for the spread is

s(A) ≤
√

2‖A‖2E −
2

n
|tr(A)|2, (3.1)

where tr(A) represents the trace of matrix A.

Lemma 5. For matrices MHn, RHn, MTn and RTn, we have

tr(MHn) =
4n − 3n− 1

3
=
M2n

3
− n,

tr(RHn) =
4n + 3n− 1

3
=
M2n

3
+ n,

tr(MTn) = 0,

and tr(RTn) = 2n.
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Proof. The results follow from the definition of trace of a matrix.

Theorem 9. The upper bound for the spread of the Mersenne Hankel matrix MHn and
Fermat Hankel matrix RHn are given, respectively, by

s(MHn) ≤
√

2/n

3

√
(n− 1)M2

2n + 6nM2n − 18nM2
n + 9(n3 − n2) and

s(RHn) ≤ 1

3

√
2(R2

2n + 18R2
n − 4R2n − 72Rn + 9n2 + 76)− 2

n
(M2n + 3n)2.

Proof. Using the Frobenius norm ‖MHn‖E from Theorem 3 and the trace formula

from Lemma 5 in Eqn. (3.1), we have

s(MHn) ≤
√

2‖MHn‖2E −
2

n
|tr(MHn)|2

=

√
2(M2

2n − 18M2
n + 9n2)

9
− 2

n

(M2n − 3n

3

)2
=

√
2/n

3

√
(n− 1)M2

2n + 6nM2n − 18nM2
n + 9(n3 − n2).

Similarly, the second inequality can be easily proved using the fact that tr(RHn) =
M2n

3 + n and

‖RHn‖E =
(R2

2n + 18R2
n − 4R2n − 72Rn + 9n2 + 76

9

)1/2
.

Theorem 10. The upper bound for the spread of the Mersenne Toeplitz matrix MTn and
Fermat Toeplitz matrix RTn are

s(MTn) ≤
√

2

3

√
4M2n +M2(1−n) − 36Mn − 18M1−n + 9n2 + 15 and

s(RTn) ≤

√
32R(2n−2) + 144R(n−1) + 2R2(1−n) + 36R1−n + 18n2 − 72n− 374

9
.

Proof. From Eqn. (2.2) on Frobenius norm and the trace formula from Lemma 5,

we have

tr(MTn) = 0 and ‖MTn‖2E =
4M2n +M2(1−n) − 36Mn − 18M1−n + 9n2 + 15

9
.

So, the first inequality follows from Eqn. (3.1).

Similarly, the second inequality follows using Eqn. (2.3) and Lemma 5 i.e

tr(RTn) = 2n

and ‖RTn‖2E =
32R(2n−2) + 144R(n−1) + 2R2(1−n) + 36R1−n + 18n2 − 374

18
.
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3.1. Rank, Determinant and Characteristics polynomial

Theorem 11. The rank of Hankel matrices with Mersenne (or Fermat) numbers is 2.

Proof. Since for n = 2, the determinant is a non zero number, i.e.

det(MH2) =

∣∣∣∣M0 M1

M1 M2

∣∣∣∣ = M2M0 −M2
1 = −1. (3.2)

So in this case rank is 2.

Now we prove for n ≥ 3. To see the rank we reduce the matrix MHn into echelon

form by performing the elementary row operations on MHn and then substituting

the entries using the identity Mn+1 −Mn = 2n. The matrix MHn is given as

MHn =



M0 M1 M2 · · · Mn−2 Mn−1
M1 M2 M3 · · · Mn−1 Mn

M2 M3 M4 · · · Mn Mn+1

...
...

...
. . .

...
...

Mn−2 Mn−1 Mn · · · M2n−4 M2n−3
Mn−1 Mn Mn+1 · · · M2n−3 M2n−2


.

Applying Ri ← Ri −Ri−1, 2 ≤ i ≤ n on MHn, where Ri denotes ith-row, we get

MHn ∼



M0 M1 M2 · · · Mn−2 Mn−1
20 21 22 · · · 2n−2 2n−2

21 22 23 · · · 2n−1 2n

...
...

...
. . .

...
...

2n−3 2n−2 2n−1 · · · 22n−5 22n−4

2n−2 2n−1 2n · · · 22n−4 22n−3


.

Now, applying Ri ↔ 2n−iRi for 2 ≤ i ≤ n−1 and substituting Mr = 2r−1 for i = 1,

we get

MHn ∼



0 1 3 · · · 2n−2 − 1 2n−1 − 1

2n−2 2n−1 2n · · · 22n−4 22n−3

2n−2 2n−1 2n · · · 22n−4 22n−3

...
...

...
. . .

...
...

2n−2 2n−1 2n · · · 22n−4 22n−3

2n−2 2n−1 2n · · · 22n−4 22n−3


.

In the above matrix, rows R2, R3, . . . , Rn−1 are identical and rows R1 and R2 are lin-

early independent. Thus, conclusively only two rows of MHn are linearly independent

and hence the rank is 2.

Similarly, the rank of Fermat Hankel matrices is 2 where nth term of the Fermat

numbers is given by 2n + 1.
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Theorem 12. The rank of Toeplitz matrices with Mersenne (Fermat) numbers is 2.

Proof. The argument is very similar to Theorem 11.

Corollary 1. For Mersenne-Hankel matrices MHn and Fermat-Hankel matrices RHn,
0 is an eigenvalue with an algebraic multiplicity n − 2 and the other two eigenvalues are
non-zero.

Theorem 13. For Hankel matrices MHn and RHn and Toeplitz matrices MTn and
RTn, we have

det(MHn) =

{
−1, n = 2

0, n ≥ 3
and det(RHn) =

{
1, n = 2

0, n ≥ 3
,

det(MTn) =

{
1
2
, n = 2

0, n ≥ 3
and det(RTn) =

{
− 1

2
, n = 2

0, n ≥ 3.

Proof. For n = 2,

det(MH2) =

∣∣∣∣M0 M1

M1 M2

∣∣∣∣ = M2M0 −M2
1 = −1.

Similarly, det(MH2) = 1, det(MT2) = 1/2 and det(RT2) = −1/2.

And, by using Theorems 11 and 12, it is rapidly follows that determinant of the

matrices MHn, RHn, MTn, RTn is zero for n ≥ 3.

Corollary 2. The Hankel and Toeplitz matrices with Mersenne and Fermat numbers are
nonsingular for n = 2 and singular for n ≥ 3.

Theorem 14. The sum of principal minors of order two of MHn is given by

λ1λ2 + λ1λ3 + ...+ λn−1λn =
(3− n)4n − (6)2n + (n+ 3)

3
,

where λ1, λ2, λ3, ..., λn are eigenvalues of MHn.

Proof. We should note that the sum of principal minors of order two is equal to the

sum of products of distinct eigenvalues taking two at a time i.e. λ1λ2 + λ1λ3 + ...+

λn−1λn [8]. From Corollary 1, without loss of generality we assume that λ1 and λ2
are non zero, thus we have

λ1λ2 + λ1λ3 + ...+ λn−1λn = λ1λ2 + 0 + 0 + ...+ 0 = λ1λ2.
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So,

λ1λ2 =

∣∣∣∣M0 M1

M1 M2

∣∣∣∣+

∣∣∣∣M0 M2

M2 M4

∣∣∣∣+ ...+

∣∣∣∣M2 M3

M3 M4

∣∣∣∣+

∣∣∣∣M2 M4

M4 M6

∣∣∣∣+ ...+

∣∣∣∣M2n−4 M2n−3
M2n−3 M2n−2

∣∣∣∣
= (M0M2 −M2

1 ) + (M0M4 −M2
2 ) + ...+ (M0M2n−2 −M2

n−1) + (M2M4 −M2
3 )+

...+ (M2M2n−2 −M2
n) + ...+ (M2n−6M2n−2 −M2

2n−4) + (M2n−4M2n−2 −M2
2n−3)

=

n−2∑
j=0

n−1∑
i=j+1

(
M2jM2i −M2

i+j

)
.

Since by using the Binet’s formula Mn = 2n − 1, we have

M2jM2i −M2
i+j = 2i+j+1 − 22i − 22j .

Hence,

λ1λ2 =

n−2∑
j=0

n−1∑
i=j+1

(2i+j+1 − 22i − 22j) =

n−2∑
j=0

(
2j+1

n−1∑
i=j+1

2i −
n−1∑

i=j+1

22i −
n−1∑

i=j+1

22j
)

=

n−2∑
j=0

(
22(j+1)(2n−j−1 − 1)− 22(j+1)

3
(22(n−j−1) − 1)− 22j(n− j − 1)

)

= 2n+1
n−2∑
j=0

2j − 22
n−2∑
j=0

22j −
n−2∑
j=0

22n

3
+

22

3

n−2∑
j=0

22j − (n− 1)

n−2∑
j=0

22j +

n−2∑
j=0

j22j

= 2n+1(2n−1 − 1)− 4n(n− 1)

3
− (5 + 3n)

3

(4n−1 − 1)

3
+
(4(1− 4n−2)

(1− 4)2

+
(n− 2)4n−1

3

)
=

(3− n)4n − (6)2n + (n+ 3)

3
.

Thus, for Mersenne Hankel matrices

λ1λ2 + λ1λ3 + ...+ λn−1λn = λ1λ2 =
(3− n)4n − (6)2n + (n+ 3)

3
.

By a similar argument, we have the following theorem for Fermat Hankel matrices.

Theorem 15. If λ′1, λ
′
2, λ
′
3, . . . , λ

′
n are n eigenvalues of Fermat Hankel matrices, then we

have

λ′1λ
′
2 + λ′1λ

′
3 + · · ·+ λ′n−1λ

′
n =

(n− 3)4n + (6)2n − (n+ 3)

3
.

Remark 1. Since rank of the Mersenne (Fermat) Hankel matrices is 2, so principal minors
of order n ≥ 3 are zero.
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Theorem 16. The sum and product of non-zero eigenvalues of Mersenne-Hankel matrices
MHn are (4n − 3n− 1)/3 and ((3− n)4n − (6)2n + (n+ 3))/3, respectively.

Proof. From Corollary 1, let λ1, λ2, λ3, ..., λn be eigenvalues of MHn such that

λ1, λ2 6= 0. We should note that the sum of all eigenvalues of a matrix is equal

to the trace. Hence from Lemma 5, we have

λ1 + λ2 + λ3 + ...+ λn−1 = λ1 + λ2 =
4n − 3n− 1

3
.

And from Theorem 14, we have

λ1λ2 =
(3− n)4n − (6)2n + (n+ 3)

3
.

Theorem 17. The characteristic polynomials chMH(t) for Mersenne-Hankel matrices
MHn and chRH(t) for Fermat-Hankel matrices RHn are, respectively, given by

chMH(t) = tn −
(4n − 3n− 1

3

)
tn−1 +

( (3− n)4n − (6)2n + (n+ 3)

3

)
tn−2 and

chRH(t) = tn −
(4n + 3n− 1

3

)
tn−1 −

( (3− n)4n − (6)2n + (n+ 3)

3

)
tn−2.

Proof. Let λ1, λ2, . . . , λn be eigenvalues ofMHn, then the characteristics polynomial

chMH(t) is

chMH(t) = (t− λ1)(t− λ2) . . . (t− λn). (3.3)

Since λ1, λ2 6= 0 and rest n− 2 eigenvalues are zero, so (3.3) reduced to

chMH(t) = tn−2(t− λ1)(t− λ2)

= tn−2(t2 − (λ1 + λ2)t− λ1λ2)

= tn −
(4n − 3n− 1

3

)
tn−1

−
( (3− n)4n − (6)2n + (n+ 3)

3

)
tn−2 (by Theorem 16).

Similarly, the second identity can be proved.

Example 3. For n = 2, 3, 4, 5, the characteristic polynomials for Mersenne Hankel matri-
ces MHn are
x2 − 3x− 1, x3 − 18x2 − 14x, x4 − 81x3 − 115x2 and x5 − 336x4 − 744x3, respectively.

Example 4. For n = 2, 3, 4, 5, the characteristic polynomial for Fermat Hankel matrices
RHn are
x2 − 7x+ 1, x3 − 24x2 + 14x, x4 − 89x3 + 115x2 and x5 − 346x4 + 744x3, respectively.
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Theorem 18. The sum of principal minors of order two of Toeplitz matrices MTn and
RTn are

α1α2 + α1α3 + ...+ αn−1αn = 2(n+1) + 2(−n+1) − n2 − 4

and γ1γ2 + γ1γ3 + ...+ γn−1γn = n2 − 2(n+1) − 2(−n+1) + 4,

respectively, where α1, α2, ..., αn are eigenvalues of MTn and γ1, γ2, ..., γn are eigenvalues of
RTn.

Proof. The argument is very similar to Theorem 14.

Since from Theorem 12, the rank of Toeplitz matrices with Mersenne or Fermat

numbers is 2. So total n − 2 eigenvalues will be zero for these matrices. Hence

without loss of generality we can assume that α1, α2 6= 0 for MTn and γ1, γ2 6= 0 for

RTn. Thus from Theorem 18, we have

α1α2 = 2(n+1) + 2(−n+1) − n2 − 4 and γ1γ2 = n2 − 2(n+1) − 2(−n+1) + 4. (3.4)

Because n−2 eigenvalues of Mersenne (Fermat) Toeplitz matrices are zero so principal

minors of order n ≥ 3 are zero.

From Lemma 5 we have trace(MTn) = 0 and trace(RTn) = 2n, Thus by follow-

ing a similar argument to Theorem 17, the characteristic polynomials chMT (t) for

Mersenne-Toeplitz matrices and chRT (t) for Fermat-Toeplitz matrices are given by

chMT (t) = tn +
(

2(n+1) + 2(−n+1) − n2 − 4
)
tn−2

and

chRT (t) = tn − (2n)tn−1 +
(
n2 − 2(n+1) − 2(−n+1) + 4

)
tn−2,

respectively.

Example 5. For n = 2, 3, 4, 5, the characteristic polynomials for Mersenne Toeplitz
matrices MTn are
x2 + 1/2, x3 + (13/4)x, x4 + (97/8)x2 and x5 + (561/16)x3, respectively.

Example 6. For n = 2, 3, 4, 5, the characteristic polynomials for Fermat Toeplitz matrices
RTn are
x2−4x−1/2, x3−6x2−(13/4)x, x4−8x3−(97/8)x2 and x5−10x4−(561/16)x3, respectively.
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4. Conclusion

This study is about some new properties of the Hankel matrices MHn = (mij)
n
i,j=1

with mij = Mi+j−2, RHn = (rij)
n
i,j=1 with rij = Ri+j−2 and Toeplitz matrices

MTn = (mij)
n
i,j=1 with mij = Mi−j and RTn = (rij)

n
i,j=1 with rij = Ri−j , where Mn

and Rn are Mersenne and Fermat numbers, respectively. Here, we developed efficient

formulas for the matrix norms like ‖.‖1, ‖.‖∞, ‖.‖E and bounds for spectral norm

‖.‖2 and spread of these matrices. Furthermore, we evaluated the rank, determinant,

principal minors, and characteristic polynomials for these matrices explicitly in closed

form. The results are supported by numerical examples.
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