Edge graceful labeling on neutrosophic graphs

Document Type : Original paper

Authors

Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India

Abstract

In this article, the edge graceful labeling concept has been expanded from conventional fuzzy graphs to intuitionistic and neutrosophic graphs. There has been much discussion of the edge graceful labeling in intuitionistic and neutrosophic graphs with certain sequence of edge labels(for each membership) in clockwise or anticlockwise direction and the resultant vertices. Also, various irregular properties and application of neutrosophic edge graceful labeling graphs have been discussed in detail.

Keywords

Main Subjects


[1] D. Ajay and P. Chellamani, Fuzzy magic labelling of neutrosophic path and star graph, Adv. Math., Sci. J. 9 (2022), no. 8, 6059–6070.  https://doi.org/10.37418/amsj.9.8.74
[2] D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, and P. Hammachukiattikul, Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM, AIMS Math. 7 (2022), no. 5, 9424–9442.  https://doi.org/10.3934/math.2022523
[3] M. Akram and R. Akmal, Operations on intuitionistic fuzzy graph structures, Fuzzy Inf. Eng. 8 (2016), no. 4, 389–410. https://doi.org/10.1016/j.fiae.2017.01.001
[4] M. Akram and R. Akmal, Intuitionistic fuzzy graph structures, Kragujevac J. Math. 41 (2017), no. 2, 219–237.
[5] M. Akram and M. Nasir, Certain bipolar neutrsophic competition graphs, J. Indones. Math. Soc. 24 (2018), no. 1, 1–25.  https://doi.org/10.22342/jims.24.1.455.1-25
[6] M. Akram and G. Shahzadi, Operations on single-valued neutrosophic graphs, J. Uncertain Syst. 11 (2017), no. 1, 1–26.
[7] K.T. Atanassov, Intuitionistic fuzzy sets atanassov, k.t., Fuzzy Sets Syst. 20 (1986), no. 1, 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
[8] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognit. Lett. 6 (1987),  no. 5, 297–302. https://doi.org/10.1016/0167-8655(87)90012-2
[9] K.R. Bhuttani and A. Battou, On M-strong fuzzy graphs, Inf. Sci. 155 (2003),  no. 1–2, 103–109. https://doi.org/10.1016/S0020-0255(03)00157-9
[10] S. Broumi, S. Krishna Prabha, and V. Ulu¸cay, Interval-valued fermatean neutrosophic shortest path problem via score function, Neutrosophic Systems with  Applications 11 (2023), 1–10.  https://doi.org/10.61356/j.nswa.2023.83
[11] S. Broumi, S. Mohanaselvi, T. Witczak, M. Talea, A. Bakali, and F. Smarandache, Complex fermatean neutrosophic graph and application to decision making, Decis. Mak. Appl. Manag. Eng. 6 (2023), no. 1, 474–501.  https://doi.org/10.31181/dmame24022023b
[12] S. Broumi, P. K. Raut, and S. P. Behera, Solving shortest path problems using  an ant colony algorithm with triangular neutrosophic arc weights, Int. J. Neutrosophic Sci. 20 (2023), no. 4, 128–28.  https://doi.org/10.54216/IJNS.200410
[13] S. Broumi, F. Smarandache, M. Talea, and A. Bakali, Single valued neutrosophic  graphs: degree, order and size, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2016, pp. 2444–2451.  https://doi.org/10.1109/FUZZ-IEEE.2016.7738000
[14] S. Broumi, R. Sundareswaran, M. Shanmugapriya, A. Bakali, and M. Talea,  Theory and applications of fermatean neutrosophic graphs, Neutrosophic Sets  Syst. 50 (2022), 248–286.  https://doi.org/10.5281/zenodo.6774802
[15] S. Broumi, R. Sundareswaran, M. Shanmugapriya, P. K. Singh, M. Voskoglou,  and M. Talea, Faculty performance evaluation through multi-criteria decision  analysis using interval-valued fermatean neutrosophic sets, Mathematics 11
(2023), no. 18, Article ID: 3817.  https://doi.org/10.3390/math11183817
[16] R. Dhavaseelan, S. Jafari, M. R. Farahani, and S. Broumi, On single-valued coneutrosophic graphs, Neutrosophic Sets Syst. 22 (2018), 180–187.   https://doi.org/10.5281/zenodo.2159886
[17] R. Dhavaseelan, R. Vikramaprasad, and V. Krishnaraj, Certain types of neutrosophic graphs, Int. J. Math. Sci. Appl. 15 (2015), no. 2, 333–339.
[18] M. Gomathi and V. Keerthika, Neutrosophic labeling graph, Neutrosophic Sets  Syst. 30 (2019), 261–272.  https://doi.org/10.5281/zenodo.3569706
[19] R. Jahir Hussain and R. M. Karthikkeyan, Fuzzy graceful graphs, Adv. Fuzzy  Syst. 12 (2017), 309–317.
[20] R. Jebesty Shajila and S. Vimala, Fuzzy vertex graceful labeling on wheel and fan  graph, IOSR J. Math. 12 (2016), no. 2, 45–49. 
[21] R. Jebesty Shajila and S. Vimala, Graceful labeling for complete bipartite fuzzy graphs, British J. Math.  comput. Sci. 22 (2017), 1–9.  https://doi.org/10.9734/BJMCS/2017/32242
[22] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets: Fundamental theoretical elements, Academic Press, 1975.
[23] S.P. Lo, On edge graceful labeling of graphs, Congr. Numer. 50 (1985), 231–241.
[24] M. Mullai, Dominations in neutrosophic graphs, Neutrosophic Graph Theory and  Algorithms (M. Mullai, ed.), IGI Global Publications, USA, 2019, pp. 131–147.
[25] M. Mullai and S. Broumi, Dominating energy in neutrosophic graphs, Int. J.  Neutrosophic Sci. 5 (2020), no. 1, 38–58. https://doi.org/10.54216/IJNS.050104
[26] M. Mullai, S. Broumi, R. Jeyabalan, and R. Meenakshi, Split domination in neutrosophic graphs, Neutrosophic Sets Syst. 47 (2021), no. 1, 240–249.  https://doi.org/10.5281/zenodo.5775126
[27] A. Nagoor Gani, B. B. Fathima Kani, and M.S. Afya Farhana, Fuzzy edge graceful  labeling on wheel graph,fan graph and friendship graph, American International  Journal of Research in Science, Technology, Engineering & Mathematics, Special  Issue of 5th International Conference on Mathematical Methods and Computation (ICOMAC-2019) (2019), 324–329.
[28] A. Nagoor Gani and M. Basheer Ahamed, Order and size in fuzzy graphs, Bull. Pure Appl. Sci. 22E (2003), no. 1, 145–148.
[29] A. Nagoor Gani and S.S. Begum, Degree, order and size in intuitionistic fuzzy graphs, Int. J. Comput. Algorithm. Math. 3 (2010), no. 3, 11–16.
[30] A. Nagoor Gani and S.R. Latha, On irregular fuzzy graphs, Appl. Math. Sci. 6 (2012), no. 11, 517–523.
[31] A. Nagoor Gani and K. Radha, On regular fuzzy graphs, J. Phys. Sci. 12 (2008),  33–40.
[32] A. Nagoor Gani and D. R. Subahashini, Fuzzy labeling tree, Int. J. Pure Appl. Math. 90 (2014), no. 2, 131–141. http://dx.doi.org/10.12732/ijpam.v90i2.3
[33] A. Nagoor Gani and D.R. Subahashini, Properties of fuzzy labeling graph, Appl. Math. Sci. 6 (2012), no. 70, 3461–3466.
[34] R. Parvathi and M.G. Karunambigai, Intuitionistic fuzzy graphs, Computational Intelligence, Theory and Applications: International Conference 9th Fuzzy Days in Dortmund, Germany, Sept. 18–20, 2006 Proceedings, Springer, 2006, pp. 139–150.
[35] R. Parvathi, M.G. Karunambigai, and K.T. Atanassov, Operations on intuitionistic fuzzy graphs, 2009 IEEE international conference on fuzzy systems, IEEE, 2009, pp. 1396–1401.  https://doi.org/10.1109/FUZZY.2009.5277067
[36] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, 1966, pp. 349–355.
[37] A. Rosenfeld, Fuzzy graphs, In Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Elsevier, 1975, pp. 77–95.  https://doi.org/10.1016/B978-0-12-775260-0.50008-6
[38] F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, 2006 IEEE International Conference on Granular Computing, 2006, pp. 38–42.  https://doi.org/10.1109/GRC.2006.1635754
[39] F. Smarandache, A geometric interpretation of the neutrosophic set - a generalization of the intuitionistic fuzzy set, 2011 IEEE International Conference on Granular  Computing, 2011, pp. 602–606.  https://doi.org/10.1109/GRC.2011.6122665
[40] F. Smarandache, New types of soft sets” hypersoft set, indetermsoft set, indetermhypersoft set, and treesoft set”: An improved version, Neutrosophic Syst. Appl. 8 (2023), 35–41.  https://doi.org/10.61356/j.nswa.2023.41
[41] G. Vetrivel and R. Nishanthini, Evenly divisible composite pseudo intrinsic vertex-magic graphs with factorizable property, International Journal of Science and  Research 10 (2021), no. 1, 551–560.
[42] H.D. Wahyuna and D. Indriati, On the total edge irregularity strength of generalized butterfly graph, J. Phys. Conf. Ser. 1008 (2018), no. 12027, 1–6.  https://doi.org/10.1088/1742-6596/1008/1/012027
[43] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure, 2010, pp. 410–413.
[44] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), no. 3, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X