[2] D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, and P. Hammachukiattikul, Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM, AIMS Math. 7 (2022), no. 5, 9424–9442.
https://doi.org/10.3934/math.2022523
[4] M. Akram and R. Akmal, Intuitionistic fuzzy graph structures, Kragujevac J. Math. 41 (2017), no. 2, 219–237.
[6] M. Akram and G. Shahzadi, Operations on single-valued neutrosophic graphs, J. Uncertain Syst. 11 (2017), no. 1, 1–26.
[10] S. Broumi, S. Krishna Prabha, and V. Ulu¸cay, Interval-valued fermatean neutrosophic shortest path problem via score function, Neutrosophic Systems with Applications 11 (2023), 1–10.
https://doi.org/10.61356/j.nswa.2023.83
[11] S. Broumi, S. Mohanaselvi, T. Witczak, M. Talea, A. Bakali, and F. Smarandache, Complex fermatean neutrosophic graph and application to decision making, Decis. Mak. Appl. Manag. Eng. 6 (2023), no. 1, 474–501.
https://doi.org/10.31181/dmame24022023b
[12] S. Broumi, P. K. Raut, and S. P. Behera, Solving shortest path problems using an ant colony algorithm with triangular neutrosophic arc weights, Int. J. Neutrosophic Sci. 20 (2023), no. 4, 128–28.
https://doi.org/10.54216/IJNS.200410
[13] S. Broumi, F. Smarandache, M. Talea, and A. Bakali, Single valued neutrosophic graphs: degree, order and size, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2016, pp. 2444–2451.
https://doi.org/10.1109/FUZZ-IEEE.2016.7738000
[14] S. Broumi, R. Sundareswaran, M. Shanmugapriya, A. Bakali, and M. Talea, Theory and applications of fermatean neutrosophic graphs, Neutrosophic Sets Syst. 50 (2022), 248–286.
https://doi.org/10.5281/zenodo.6774802
[15] S. Broumi, R. Sundareswaran, M. Shanmugapriya, P. K. Singh, M. Voskoglou, and M. Talea, Faculty performance evaluation through multi-criteria decision analysis using interval-valued fermatean neutrosophic sets, Mathematics 11
(2023), no. 18, Article ID: 3817.
https://doi.org/10.3390/math11183817
[17] R. Dhavaseelan, R. Vikramaprasad, and V. Krishnaraj, Certain types of neutrosophic graphs, Int. J. Math. Sci. Appl. 15 (2015), no. 2, 333–339.
[19] R. Jahir Hussain and R. M. Karthikkeyan, Fuzzy graceful graphs, Adv. Fuzzy Syst. 12 (2017), 309–317.
[20] R. Jebesty Shajila and S. Vimala, Fuzzy vertex graceful labeling on wheel and fan graph, IOSR J. Math. 12 (2016), no. 2, 45–49.
[22] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets: Fundamental theoretical elements, Academic Press, 1975.
[23] S.P. Lo, On edge graceful labeling of graphs, Congr. Numer. 50 (1985), 231–241.
[24] M. Mullai, Dominations in neutrosophic graphs, Neutrosophic Graph Theory and Algorithms (M. Mullai, ed.), IGI Global Publications, USA, 2019, pp. 131–147.
[27] A. Nagoor Gani, B. B. Fathima Kani, and M.S. Afya Farhana, Fuzzy edge graceful labeling on wheel graph,fan graph and friendship graph, American International Journal of Research in Science, Technology, Engineering & Mathematics, Special Issue of 5th International Conference on Mathematical Methods and Computation (ICOMAC-2019) (2019), 324–329.
[28] A. Nagoor Gani and M. Basheer Ahamed, Order and size in fuzzy graphs, Bull. Pure Appl. Sci. 22E (2003), no. 1, 145–148.
[29] A. Nagoor Gani and S.S. Begum, Degree, order and size in intuitionistic fuzzy graphs, Int. J. Comput. Algorithm. Math. 3 (2010), no. 3, 11–16.
[30] A. Nagoor Gani and S.R. Latha, On irregular fuzzy graphs, Appl. Math. Sci. 6 (2012), no. 11, 517–523.
[31] A. Nagoor Gani and K. Radha, On regular fuzzy graphs, J. Phys. Sci. 12 (2008), 33–40.
[33] A. Nagoor Gani and D.R. Subahashini, Properties of fuzzy labeling graph, Appl. Math. Sci. 6 (2012), no. 70, 3461–3466.
[34] R. Parvathi and M.G. Karunambigai, Intuitionistic fuzzy graphs, Computational Intelligence, Theory and Applications: International Conference 9th Fuzzy Days in Dortmund, Germany, Sept. 18–20, 2006 Proceedings, Springer, 2006, pp. 139–150.
[35] R. Parvathi, M.G. Karunambigai, and K.T. Atanassov, Operations on intuitionistic fuzzy graphs, 2009 IEEE international conference on fuzzy systems, IEEE, 2009, pp. 1396–1401.
https://doi.org/10.1109/FUZZY.2009.5277067
[36] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, 1966, pp. 349–355.
[38] F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, 2006 IEEE International Conference on Granular Computing, 2006, pp. 38–42.
https://doi.org/10.1109/GRC.2006.1635754
[39] F. Smarandache, A geometric interpretation of the neutrosophic set - a generalization of the intuitionistic fuzzy set, 2011 IEEE International Conference on Granular Computing, 2011, pp. 602–606.
https://doi.org/10.1109/GRC.2011.6122665
[40] F. Smarandache, New types of soft sets” hypersoft set, indetermsoft set, indetermhypersoft set, and treesoft set”: An improved version, Neutrosophic Syst. Appl. 8 (2023), 35–41.
https://doi.org/10.61356/j.nswa.2023.41
[41] G. Vetrivel and R. Nishanthini, Evenly divisible composite pseudo intrinsic vertex-magic graphs with factorizable property, International Journal of Science and Research 10 (2021), no. 1, 551–560.
[43] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure, 2010, pp. 410–413.