[1] H. Abdollahzadeh Ahangar, T.W. Haynes, and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1443–1454.
https://doi.org/10.1007/s40840-015-0141-1
[2] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016), no. 2, 501–517.
[3] M.P. Alvarez-Ruiz, T. Mediavilla-Gradolph, S.M. Sheikholeslami, J.C. Valenzuela-Tripodoro, and I.G. Yero, On the strong Roman domination number of graphs, Discrete Appl. Math. 231 (2017), 44–59.
https://doi.org/10.1016/j.dam.2016.12.013
[5] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer International Publishing, Cham, 2020,
pp. 365–409.
[7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Varieties of roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer International Publishing, Cham, 2021, pp. 273–307.
[10] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000), no. 2, 125–150.
https://doi.org/10.1007/s002249910009
[12] G. Hickey, F. Dehne, A. Rau-Chaplin, and C. Blouin, SPR distance computation for unrooted trees, Evol. Bioinform. 4 (2008), 17–27.
https://doi.org/10.4137/EBO.S419
[13] R. Khoeilar, H. Karami, M. Chellali, and S.M. Sheikholeslami, An improved upper bound on the double Roman domination number of graphs with minimum degree at least two, Discrete Appl. Math. 270 (2019), 159–167.
https://doi.org/10.1016/j.dam.2019.06.018
[14] M. Liedloff, T. Kloks, J. Liu, and S.L. Peng, Efficient algorithms for Roman domination on some classes of graphs, Discrete Appl. Math. 156 (2008), no. 18, 3400–3415.
https://doi.org/10.1016/j.dam.2008.01.011
[16] I. Stewart, Defend the Roman empire!, Sci. Am. 281 (1999), no. 6, 136–138.