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Abstract: Let G = (V,E) be a simple graph with vertex set V and edge set E. A
mixed double Roman dominating function (MDRDF) of G is a function f : V ∪ E →
{0, 1, 2, 3} satisfying (1) for any element x ∈ V ∪E with f(x) = 0, there must be either
element y ∈ V ∪ E, with f(y) = 3, which is adjacent or incident to x, or either two

elements y, z ∈ V ∪ E, with f(y), f(z) = 2 which are adjacent or incident to x; (2)

for any element x ∈ V ∪ E with f(x) = 1, there must be either element y ∈ V ∪ E,
with f(y) ≥ 2, which is adjacent or incident to x. The weight of an MDRDF f is

w(f) = f(V ∪ E) =
∑

x∈V ∪E f(x) and the minimum weight among all the MDRD

functions the MDRD-number, γ∗dR(G), of the graph G. In this paper we start the
study of this variation of the classic Roman domination problem by setting some basic

results, giving exact values and sharp bounds of the MDRD number and we approach

the study of the complexity of the decision problem associated to the MDR domination
in graphs.
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1. Introduction

In this paper we introduce the concept of mixed double Roman domination in graphs.

The emergence of Roman domination in graphs is closely related to a defensive strat-

egy decreed by the Roman Emperor Constantine I the Great around the 3rd century.

Under this defensive strategy, the Emperor determined that: i) at any city of the

empire could be deployed at most two legions; ii) any legion could be moved to a

neighboring city to defend it from an external attack; iii) no legion, established in

an strong city, could be transfered to another weaker place if it made the stronger

city defenseless. Basicly, we can have some weak cities with no legions; possibly some

cities with a legion, that are able to defend itself from an external attack; and, finally,

the stronger cities in which we have deployed two legions and that are able to send

one of its legions to defend any weak neighbor city from an external attack.

The defensive strategy described before leaded to the mathematical concept of Roman

dominating function in a graph. A Roman dominating function (RDF) in a graph

G = (V,E) is a function f : V (G) → {0, 1, 2} such that any vertex v with f(v) = 0

must have at least a neighbor w ∈ V (G) such that f(w) = 2. The minimum weight

f(V ) =
∑

v∈V (G) f(v) among all these RDF in a graph G is known as the Roman

domination number of G, denoted by γR(G). This topic was initialy introduced and

devoloped by Stewart [16] in 1999, and Revelle and Rosing [15] in 2000, and a few

years later by Cockayne et al. [9] in 2004. So far, several papers have been published

regarding Roman domination including several variations of this problem as double

Roman domination [4], mixed Roman domination [1, 11], strong Roman domination

[3], total Roman domination [2], etc. For more details on Roman domination and its

variations we refer the reader to the book chapters [5, 7] and survey [6].

In this paper we consider simple connected graphs G = (V,E) with vertex set

V = V (G), n = |V | vertices, edge set E = E(G) and m = |E| edges. For ev-

ery vertex v ∈ V (G), let NG(v) = {w ∈ V : vw ∈ E} be the open neighbor-

hood of v and let d(v) = |NG(v)| denote the degree of v. The closed neighbor-

hood of v is the set NG[v] = NG(v) ∪ {v}. The minimum and maximum degree

of a graph G are denoted by δ(G) and ∆(G), respectively. The open neighbor-

hood of a set S is NG(S) = ∪v∈SNG(v) and the closed neighborhood of a set S is

NG[S] = NG(S) ∪ S. For any element x ∈ V ∪ E of the graph G, let us denote

by Nm(x) = {y ∈ V ∪ E : y is either adjacent to or incident with x} and, besides,

Nm[x] = Nm(x) ∪ {x}.
A dominating set of vertices is a set S such that every vertex in V \ S has, at least,

a neighbor in S, consequently, N [S] = V. The domination number of a graph γ(G)

is the minimum cardinality of a dominating set in G. We can extend the concept of

domination to mixed domination by considering both vertices and edges, so that each

element of Nm(x) is dominated by x ∈ V ∪E. In this case, we call X ⊆ V ∪E a mixed

dominating set if every element in (V ∪ E) \X is dominated by, at least, an element

belonging to X. The mixed domination number of G is defined analogously and it is

denoted by γ∗(G).
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With these notations, a Roman dominating function (RDF) f in a graph is f : V →
{0, 1, 2} with the property that any vertex assigned with 0 must be adjacent to, at

least, a vertex labelled with 2. The Roman domination number of a graph G is

γR(G) = min{f(V ) =
∑

v∈V f(v) : f is an RDF in G }.
In 2016, Beeler et al. [4] defined the double Roman domination as a matter of stronger

version of Roman domination. In this case, the aim is to double the protection of

any weak place so that an external attack could be defended by two legions. A

double Roman dominating function (DRDF) is a function f : V → {0, 1, 2, 3} such

that (i) any vertex assigned with 1 is adjacent to either a vertex assigned with 2 or

either a vertex assigned with 3; and (ii) any vertex with f(v) = 0 is adjacent to a

vertex assigned with 3 or either is adjacent to two different vertices assigned with

2. The double Roman domination number of a graph G is γdR(G) = min{f(V ) =∑
v∈V f(v) : f is a DRDF in G }.

Another variation of the Roman domination problem was the mixed Roman domina-

tion, introduced by Ahangar et al. [1] in 2017. Mixed Roman domination is based

in the same principles as the Roman domination, but in this case also the defense

of ”roadways” is considered, so that at most two legions could be deployed either

in a city (vertex) or either in the way (edge) joining two neighboring cities. More

explicitly, any vertex (resp. edge) with no legions must be adjacent to a vertex, or

incident with an edge, with two legions.

In this paper we deal with the new concept of mixed double Roman domination.

Namely, a mixed double Roman domination function (MDRDF) is a function f :

V ∪ E → {0, 1, 2, 3} such that any element x ∈ V ∪ E could “be defended” by, at

least, two legions settled in the element x itself or either deployed in neighboring

elements of x. Clearly, there is an binunivocal relation between the set of MDRD

functions and all the possible partitions {V0 ∪E0, V1 ∪E1, V2 ∪E2, V3 ∪E3} of the set

V ∪ E, by defining Vj ∪ Ej = {x ∈ V ∪ E : f(x) = j}.
In other words, an MDRDF is a function f : V ∪ E → {0, 1, 2, 3}, with the notation

f ≡ {V0 ∪ E0, V1 ∪ E1, V2 ∪ E2, V3 ∪ E3} satisfying the following conditions

a) For every element x ∈ V ∪ E that f(x) = 0, the element x must have at least

two neighbours in V2 ∪ E2 or at least one neighbour in V3 ∪ E3.

b) For every element x ∈ V ∪ E that f(x) = 1, the element x must have at least

one neighbour in V2 ∪ V3 ∪ E2 ∪ E3.

The minimum weight of an MDRDF w(f) = f(V ) =
∑

x∈V ∪E f(x) is the mixed

double Roman domination number of the graph G and it is denoted by γ∗dR(G). An

MDRDF f with minimum weight w(f) = γ∗dR(G) is called a γ∗dR(G)-function.

Let x ∈ V ∪ E be an element of G, we denote by f(x) =
∑

y∈Nm(x) f(y). For a set

S ⊆ V ∪E of a graph, G let us define the function fS by assigning 3 to every element

of S, 0 to every element in Nm[S] \ S, and 1 to all remaining elements in V ∪E. We

note that fS is a MRDF for any set S ∈ V ∪ E.

We end this section by the following observation.
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Observation 1. Without lost of generality, we may assume that if f : V ∪E → {0, 1, 2, 3}
is a γ∗dR(G)-function then f(x) 6= 1 for all x ∈ V ∪ E.

Proof. It is sufficient to observe that if f(x) = 1, then it must be y ∈ Nm(x) such

that f(y) ≥ 2. Then, we may construct g : V ∪E → {0, 1, 2, 3} such that g(z) = f(z)

for all z 6= x, y, g(x) = 0 and g(y) = 3 leading to a new MDRDF either with no 1

assigned to x or either with g(V ) < f(V ), which is a contradiction.

2. Complexity

Our aim in this section is to study the complexity of the following decision problem,

to which we shall refer as MIXED DOUBLE ROMAN DOMINATION:

MIXED DOUBLE ROMAN DOMINATION (Mixed DRD)

Instance: Graph G = (V,E), positive integer k.

Question: Does G have a mixed double Roman dominating function of weight at

most k?

We will show that this problem is NP-complete by reducing the special case of Exact

Cover by 3-sets (X3C) to which we refer as X3C3. The X3C problem considers a set

of 3q elements, X, and a set of 3-elements clauses, C and asks wether there exists

a subset C ′ of C that covers all elements of X exactly once. The variation X3C3

considers the input restricted to those sets of clauses C such that every element of X

appears in exactly three of these clauses. The NP-completeness of X3C3 was proven

in 2008 by Hickey et al. [12].

X3C3

Instance: A set of elements X with |X| = 3q, and a collection C of 3-element

subsets of X, with |C| = 3q, such that each element occurs in exactly 3 members of

C.

Question: Does C contain an exact cover for X, i.e. does there exist a subcollection

C ′ ⊂ C such that every element of X occurs in exactly one member of C ′?

Theorem 2. Problem Mixed DRD is NP-Complete for bipartite graphs.

Proof. MRD is a member of NP, since we can check in polynomial time that a

function f : V ∪ E → {0, 1, 2, 3} has weight at most k and is a mixed double Roman

dominating function. Now let us show how to transform any instance of X3C3 into

an instance G of Mixed DRD so that one of them has a solution if and only if the

other one has a solution. Let X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , C3q} be an

arbitrary instance of X3C3.

For each xi ∈ X, we create a vertex wi. Let W = {w1, w2, . . . , w3q}. For each Cj ∈ C
we build a connected graph Hj of order 8 obtained from two disjoint stars K1,3, one
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centered at aj and the other star with center rj and leaves bj , cj , dj by adding the

edges ajbj and ajdj . Let Y = {c1, c2, . . . , c3q}. Now to obtain a graph G, we add

edges cjwi if xi ∈ Cj . Clearly G is a bipartite graph. Set k = 21q, and let H be the

subgraph of G induced by all V (Hj). Observe that for every mixed double Roman

dominating function f on G, each Hj has weight at least 6, and so f(H) ≥ 18q. We

also note that if f(cj) = m with m ∈ {2, 3} for some vertex cj , then f(Hj) ≥ 6 +m.

Suppose that the instance X,C of X3C3 has a solution C ′. We construct a mixed

double Roman dominating function f on G of weight k. We assign the value 0 to every

wi and to every edge incident with wi. For every Cj ∈ C ′, assign the value 3 to cj , rj
and aj , and 0 to the remaining elements of Hj . Also for every Cj /∈ C ′, assign the

value 3 to edge cjrj and vertex aj , and 0 to the remaining elements of Hj . Note that

since C ′ exists, its cardinality is precisely q, and so the number of cj ’s with weight

3 is q, having disjoint neighborhoods in {x1, x2, . . . , x3q}, Since C ′ is a solution for

X3C3, every vertex in W is adjacent to a vertex of Y assigned a 3. Moreover, every

edge incident with a vertex of Y is adjacent to an element assigned 3 under f. Hence,

it is straightforward to see that f is a mixed double Roman dominating function with

weight f(V ) = 18q + 3q = k.

Conversely, suppose that G has a mixed double Roman dominating function with

weight at most k. Among all such functions, let g = (V0∪E0, V1∪E1, V2∪E2, V3∪E3, )

with a fewest elements assigned the value 1. According to our choice of g, we claim

that every vertex of Y is assigned either 0 or 3. Indeed, suppose that g(cj) ∈ {1, 2}
for some j. Then it is easy to see that g(Hj) ≥ 7. In this case, let g′ be the function

defined on G by g′(cjrj) = 3, g′(aj) = 3 and g′(y) = 0 for any other element y of Hj ,

and g′(x) = g(x) for every element x of G not in Hj . Clearly g′ is either a MRDF

on G with weight g′(V ) < g(V ) or having the same weight but with fewer vertices

assigned the value 1 than those under g, contradicting our choice of g, which proves

the claim. Now, on the basis of the previous fact and since g(H) ≥ 18q, we may

assume that if g(cj) = 0, then g(cjrj) = 3. Hence regardless of the value assigned to

every cj ; all edges of the form wicj are assigned the value 0. Now since g(H) ≥ 18q

and k ≤ 21q we need to assign a weight of at most 3q on the elements G in order to

mixed double Roman dominate the vertices of W. Observe that since |W | = 3q, we

have W ∩V0 6= ∅. Note that if g(wi) = 3 for some i, then we can reassign wi the value

2 instead of 3. If g(wi) = 1 for some i, then wi must have a neighbor in E2 ∪ V2, say

w∗i . If w∗i ∈ E2, then every vertex of N(wi)∩Y is assigned a 0, and so we can reassign

wi, w
∗
i and one vertex of N(wi) ∩ Y the values 0, 0, 3, respectively. Hence we can

assume that w∗i ∈ V2. But then as above, we reassign wi and w∗i the values 0 and 3

respectively. Thus, without loss of generality, we may suppose that W ⊆ V0 ∪V2. Let

W0 = W ∩ V0 and W2 = W ∩ V2. Moreover, since W0 = W ∩ V0 6= ∅, let Y2 = Y ∩ V2
and Y3 = Y ∩ V3. Clearly, a vertex of W2 has no neighbor in Y3 for otherwise we can

reassign it the value 0 instead of 2. Likewise, if some vertex wi ∈ W2 has a neighbor

in Y2, then we can reassign them the values 0 and 3 which makes us gain a unit in the

weight of g. Therefore, we assume that no vertex of W2 has a neighbor in Y2∪Y3. Let

W ′0 be the subset of all vertices of W0 having a neighbor in Y3 and let W ′′0 = W0−W ′0.
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Thus

|W ′0|+ |W ′′0 |+ |W2| = 3q. (2.1)

Since every vertex of W ′′0 must have at least two neighbors in Y2, the following in-

equality holds

3 |Y2| ≥ 2 |W ′′0 | . (2.2)

Also, since every vertex of Y3 has three neighbors in W , we must have

3 |Y3| ≥ |W ′0| . (2.3)

Using the facts that k ≤ 21q and f(Hj) ≥ 6+m for every cj with f(cj) = m ∈ {2, 3},
we deduce that

3 |Y3|+ 2 |Y2|+ 2 |W2| ≤ 3q (2.4)

By (2.2) and (2.3), inequality (2.4) becomes

|W ′0|+
4

3
|W ′′0 |+ 2 |W2| ≤ 3q. (2.5)

Now using (2.1), inequality (2.5) yields 1
3 |W

′′
0 | + |W2| ≤ 0, implying that |W ′′0 | =

|W2| = 0. Therefore Y2 = ∅, |W ′0| = 3q, and so |Y3| = q. Consequently, one can easily

show that X3C3 has a solution C ′ = {Cj : g(cj) = 3}. 2

Next, we show that the decision problem corresponding to the mixed double Roman

domination number may be solved in linear time, under certain restrictions in the

underlying graphs. Namely, we prove that it is possible to have a solution for this

Roman-domination type problem in linear time as long as the corresponding graph has

bounded clique-width. Moreover, it can be deduced from this fact that the decision

problem can be solvable in linear time also for the class of trees.

In order to demonstrate this fact, we use some objects and results from logical struc-

ture, whose formal definition the reader can find in [10, 14]. More specifically, we

call a k-expression or a k-presentation on the vertices vi of a graph G with set of

labels {1, . . . , k} to an expression that defines the graph structure of G by using the

operations described below
• i(x) : To create a new vertex, x, with an i assigned as a label.

G1 ⊕G2 : To create a new graph as the disjoint union of G1 and G2.

ηij(G) : To create all edges in G that join i-vertices with j-vertices.

ρi→j(G) : To change the label of all i-vertices into label j.

The minimum positive integer k which is needed to construct the graph G by means

of a k-expression is called the clique-width of the graph G. For example, the complete
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bipartite graph K2,3 with partite set of vertices {a1, a2}∪{b1, b2, b3} can be described

by the following 2-expression.

η12 ((((•1(a1)⊕ •1(a2))⊕ •2(b1))⊕ •2(b2))⊕ •2(b3))

Let us recall that MSOL(τ1) represents the monadic second order logic with quan-

tification over subsets of elements of the logic structure G(τ1). Namely, G(τ1) is the

logic structure < V (G)∪E(G), R > where R is a binary relation such that R(x, y) is

satisfied if and only if x, y are either adjacent or incident elements of V (G) ∪ E(G).

We say that an optimization problem belongs to the class of LinEMSOL(τ) optimiza-

tion problems if it can be described in the following way (see [14] for more details,

since this is a version of the definition given by [10] restricted to finite simple graphs),

Opt

 ∑
1≤i≤l

ai|Xi| : < G(τ1), X1, . . . , Xl > � θ(X1, . . . , Xl)


where θ is an MSOL(τ1) formula that contains free set-variables X1, . . . , Xl, integers

ai and Opt is either min or max .

In what follows, we make use of a result concerning LinEMSOL optimization problems

by Courcelle et al. [10].

Theorem 3. (Courcelle et al. [10]) Let k ∈ N and let C be a class of graphs of clique-width
at most k. Then every LinEMSOL(τ1) optimization problem on C can be solved in linear
time if a k-presentation of the graph is part of the input.

Theorem 3 was used by Liedloff et al. [14] to prove a result related to the complexity

of the Roman domination decision problem. We prove an analogous result regarding

the decision problem associated to the mixed double Roman domination problem.

Theorem 4. The mixed double Roman domination problem belongs to the class of
optimization problems LinEMSOL(τ1).

Proof. In order to prove the result we only have to show that the mixed dou-

ble Roman domination problem can be expressed as a LinEMSOL(τ1) optimization

problem.

Let f = (V0 ∪ E0, . . . , V3 ∪ E3) be an MDRDF in the graph G = (V,E). Clearly,

the weight of f is w(f) = |V1 ∪ E1|+ 2|V2 ∪ E2|+ 3|V3 ∪ E3|. Next, let us define the

free set-variables Xi : V ∪E → {0, 1} as follows Xi(z) = 1, if and only if z ∈ Vi ∪Ei

and Xi(z) = 0 in other case. To avoid confusion with logical notation, we denote by

|Xi| =
∑

z∈V ∪E Xi(z), although it is clear that |Xi| = |Vi ∪ Ei|. With that structure
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and following these notations, we have that the mixed double Roman domination

decision problem is equivalent to optimize the expression

min
Xi

{|X1|+ 2|X2|+ 3|X3| : < G(τ1), X0, . . . , X3 > � θ(X0, . . . , X3)} ,

where θ is defined below

θ(X0, . . . , X3) = ∀z
(
X2(z) ∨X3(z) ∨

(
X1(z) ∧ ∃y ((X2(y) ∨X3(y)) ∧R(z, y))

)
∨

∨
(
X0(z) ∧ (∃y (X3(y) ∧R(z, y)) ∨ ∃y, t (X2(y) ∧X2(t) ∧R(z, y) ∧R(z, t)))

))
It is not difficult to check that θ corresponds to the conditions required to any mixed

double Roman domination function. The definition of θ consists in four main clauses,

where the first and the second ones describe the cases in which z is a self-defended

element of V ∪ E. If the third clause is satisfied then z is an element assigned with

a label 1 by f which is adjacent or incident with an element assigned with a label

greater or equal than 2. Analogously, the last clause is satisfied when the element z is

such that f(z) = 0 and it verifies the conditions required to an MDRDF. Therefore,

we may assume that f is an MDRDF if and only if the logical expression θ is satisfied.

2

The corollaries stated below is an immediate consequence of Theorem 4.

Corollary 1. The decision problem related to the mixed double Roman domination prob-
lem can be solved in linear time on any graph G with clique-width bounded by a positive in-
tender k, provided that either there exists a linear-time algorithm to construct a k-expression
of G, or a k-expression of G is part of the input.

Corollary 2. The mixed double Roman domination decision problem can be solved in
linear time for any tree T .

The last corollary is derived from the fact that any bounded treewidth graph is also

a bounded clique-width graph and, of course, any tree has treewidth equal to 1.

Finally, it is well known that many classes of graphs G have bounded clique-width

cw(G) as, for example, the cographs (cw(G) ≤ 2) or the distance hereditary graphs

(cw(G) ≤ 3), so also for these graphs we can have a solution in linear time for the

MDRD problem.

3. Bounds

In [1] the authors described the following graphs

• G(a, b, c), which are the graphs obtained from a non-trivial star K1,n−1 with

center v by adding edges from its complement such that G(a, b, c)− v = aK1 ∪
bK2 ∪ cP3
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• for every j ≤ a, let Gj(a, b, c) be the graph obtained from G(a, b, c) by subdi-

viding (once) j pendant edges. (See Figure 1).

Let H be the family of graphs H = {G(a, b, c), Gj(a, b, c) : a, b, c ≥ 0, j ≤ a} satisfying

that if G ∈ H and (b, c) ∈ {(0, 0), (1, 0)}, then either G = G(0, 1, 0) = K3 or a > j.

r
u u u u u u u u u

u
u u u u u u u uu u u

Figure 1. G(4, 1, 1) and G3(4, 2, 0)

In the same paper, the authors proved the following result, which we will use further.

Proposition 1. [1] Let G be a connected graph of order n ≥ 2, size m, and ∆(G) ≥ 1.
Then γ∗R(G) ≤ m+ n− 2∆(G) + 1, with equality if and only if G ∈ H.

Next, we give an upper bound for the mixed double Roman domination number of a

graph in terms of the mixed Roman domination one.

Proposition 2. Let G be a non trivial connected graph of order n ≥ 2. Then

γ∗dR(G) ≤ 2γ∗R(G)− 1

and the equality holds if and only if G ∈ H.

Proof. Let f = (V0 ∪ E0, V1 ∪ E1, V2 ∪ E2) be a γ∗R(G)-function. Since G is a non

trivial we have that V2∪E2 6= ∅. Consider the function g : V (G)→ {0, 1, 2, 3} defined

as follows, g(x) = 3 for all x ∈ V2 ∪ E2, g(x) = 2 for all x ∈ V1 ∪ E1 and g(x) = 0

otherwise. There are no elements labeled 1 under the function g and every element

of G with a label 0 under f is adjacent to an element in V2 ∪E2, with a label 3 under

the new function g. Then

γ∗dR(G) ≤ w(g) = 2|V1 ∪ E1|+ 3|V2 ∪ E2| = 2w(f)− |V2 ∪ E2| ≤ 2γ∗R(G)− 1

If the equality γ∗dR(G) = 2γ∗R(G) − 1 holds then |V2 ∪ E2| = 1 for all mixed Roman

domination function f = (V0 ∪E0, V1 ∪E1, V2 ∪E2) in G. Let f be a γ∗R(G)-function
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and let V2 ∪ E2 = {x}. If x ∈ V2 then f(y) = 0, for all y ∈ Nm(x), because f is a

MDR having minimum weight. So,

γ∗R(G) = w(f) = 2 +
∑

y 6∈Nm(x)

f(y)

= 2 +
∑

y∈V (G)−Nm(x)

f(y) +
∑

y∈E(G)−Nm(x)

f(y)

≥ 2 + n− 1− d(x) +m− d(x)

≥ m+ n− 2∆(G) + 1

and by applying Proposition 1, we have that γ∗R(G) = m+n− 2∆(G) + 1 and hence,

G ∈ H. Assume that x ∈ E2. Since f is a γ∗R(G)-function then f(y) = 0, for all

y ∈ Nm(x). Let us denote by {u, v} the final vertices of x. Hence, we have that

γ∗R(G) = w(f) = 2 +
∑

y 6∈Nm(x)

f(y)

= 2 +
∑

y∈V (G)−Nm(x)

f(y) +
∑

y∈E(G)−Nm(x)

f(y)

≥ 2 + n− 2 +m− 1− (d(u)− 1)− (d(v)− 1)

≥ m+ n− 2∆(G) + 1

and we can reasoning as in the previous case. This completes the proof. 2

For any tree T1, let T1◦K1 denote the corona of T1 and let F = {T1◦K1 | T1 is a tree}.

Lemma 1. If T ∈ F , then γ∗dR(T ) = 3n(T )
2

.

Proof. Let T ∈ F . Then T is the corona of a tree T1. Let V (T1) = {v1, . . . , vt}
and ui be the leaf adjacent to vi in T for each i. Clearly, the function f defined by

f(vi) = 3 and f(ui) = 0 for each i, is an MDRDF of T of weight 3t implying that

γ∗dR(T ) ≤ 3n(T )
2 .

Next we prove the inverse inequality. We proceed by induction on t. If t = 1, then

clearly γ∗dR(T ) = 3n(T )
2 . Assume that t ≥ 2. Without loss of generality we may assume

that v1 is a leaf of T1 and v2 is its support vertex. Assume that f is a γ∗dR(T )-function

such that f(v1) + f(v2) is as large as possible. By the choice of f , we have f(u1) < 3.

First let f(u1) = 0. To double Roman dominate u1 and by the choice of f , we must

have f(v1) = 3 and f(v1v2) = 0. If f(v2) ≥ 2, then clearly the function f restricted

to T −{v1, u1} is a MDRDF of T −{v1, u1} and by the induction hypothesis we have

γ∗dR(T ) ≥ 3 + 3(n(T )−2)
2 = 3n(T )

2 . Assume that f(v2) = 0. To double Roman dominate

u2 and by the choice of f , we must have f(u2) = 2 and f(u2v2) = 0. It follows that to

double Roman dominate the edge v2u2, some edge e incident to v2 must be assigned

at least 2 under f . Again the function f restricted to T − {v1, u1} is a MDRDF of

T − {v1, u1} and as above we have γ∗dR(T ) ≥ 3n(T )
2 .
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Now let f(u1) = 2. To double Roman dominate the edge v1u1 and by the choice of f ,

we must have f(v1v2) = 2. Since f(u2)+f(v2u2)+f(v2) ≥ 2, the function g defined by

g(v1) = g(v2) = 3, g(u1) = g(u2) = g(v1u1) = g(v2u2) = 0 and g(x) = f(x) otherwise,

is a γ∗dR(T )-function which contradicts the choice of f . Hence γ∗dR(T ) ≥ 3n(T )
2 and

thus γ∗dR(T ) = 3n(T )
2 . 2

Theorem 5. Let T be a tree of order n ≥ 2. Then γ∗dR(T ) ≤ 3n
2
, with equality if and

only if T ∈ F .

Proof. We use induction on n. If n = 2, then T = P2 ∈ F and clearly γ∗dR(T ) = 3 =
3n
2 . Assume that n ≥ 3 and the result holds for any tree T ′ of order n′ with n′ < n. Let

T be a tree of order n. If diam(T ) = 2, then T is a star and we have γ∗dR(T ) = 3 < 3n
2 .

If diam(T ) = 3, then T is a double star and we have γ∗dR(T ) = 6 ≤ 3n
2 with equality

if and only if n = 4 and this if and only if T = P4 ∈ T . Let diam(T ) ≥ 4 and

v1v2 . . . vk be a diametral path in T . Root T at vk. Let T ′ = T − Tv2 . Obviously any

γ∗dR(T ′)-function can be extended to an MDRDF of F by assigning a 3 to v2 and a 0

to other elements of Tv2 and the edge v3v2. It follows from the induction hypothesis

that

γ∗dR(T ) ≤ γ∗dR(T ′) + 3 ≤ 3n(T ′)

2
+ 3 =

3(n(T )− deg(v2))

2
+ 3 ≤ 3n(T )

2
. (3.1)

If γ∗dR(T ) = 3n(T )
2 , then all inequalities occurring in the inequality chain (3.1) are

equalities, and in particular we have deg(v2) = 2 and γ∗dR(T ′) = 3n(T ′)
2 . It follows

from the induction hypothesis that T ′ ∈ F and so T ′ is the corona of a tree T1. Let

V (T1) = {x1, . . . , xt} and ui be the leaf adjacent to xi in T ′ for each i. If v3 = ui
for some i, say i = t, then the function g defined by g(xi) = 3 for 1 ≤ i ≤ t − 1,

g(v2) = 3, g(xtut) = 2 and g(x) = 0 otherwise, is an MDRDF of T of weight less

that 3n
2 which is a contradiction. Hence v3 = xi for some i. Then T is the corona of

T1 + xiv2 and so T ∈ T . This completes the proof. 2

Next, we give an upper bound for the mixed double Roman domination number of a

graph in terms of the order and matching number.

Theorem 6. Let G be a connected graph of order n ≥ 2. Then

γ∗dR(G) ≤ 2n− α(G).

Furthermore, the bound is sharp for any tree T in F .

Proof. Let M = {uivi | 1 ≤ i ≤ α(G)} be a matching of G and let X = V (G)\V (M)

be set of M -unsaturated vertices. It is easy to see that the function f defined by

f(uivi) = 3 for 1 ≤ i ≤ α(G), f(x) = 2 for each x ∈ X and f(x) = 0 otherwise, is
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an MDRDF of G and this implies that γ∗dR(G) ≤ ω(f) = 3α(G) + 2(n − 2α(G)) =

2n− α(G).

To see the sharpness, Let G be the graph obtained from k ≥ 1 paths P i
4 =

ui1u
i
2u

i
3u

i
4 (1 ≤ i ≤ k) by adding k − 1 edges between the vertices u12, . . . , u

k
2 to

connected the paths. It is easy to verify that γ∗dR(G) = 6k = 2n(G)− α(G). 2

In [13], the author proved an upper bound for the double Roman domination number

of a connected graph that we use in the proof of our next result. Namely,

Proposition 3. [8] Let G be a connected graph with order n ≥ 5 and minimum degree
at least two. If G 6∈ {C5, C7}, then γdR(G) ≤

⌊
11
10
n
⌋
.

Now, we prove an upper bound for the mixed double Roman domination number of

a connected graph in terms of the order and the size.

Theorem 7. Let G be a connected graph with order n ≥ 2 and size m. Then

γ∗dR(G) ≤
⌊

11

10
(n+m)

⌋
.

Proof. Let G be a connected graph with order n and size m. If n = 2, then clearly

γ∗dR(G) = 3 =
⌊
33
10

⌋
=
⌊
11
10 (n+m)

⌋
. Assume that n ≥ 3. Let W (G) be a new graph

whose set of vertices is V (G) ∪ E(G) and where two vertices x, y ∈ V (W (G)) are

adjacent if and only if one of the following condition holds

• xy ∈ E(G).

• y ∈ V (G) is an end-vertex of x ∈ E(G).

• x, y ∈ E(G) are two edges sharing a common end-vertex in G.

Clearly, a function f is an MDRDF in G if and only if it is an DRDF in W (G). Since

G is a connected graph then W (G) has minimum degree at least two. Therefore, by

applying Proposition 3 we have that γ∗dR(G) = γdR(W (G)) ≤
⌊
11
10 (n+m)

⌋
2

Lemma 2. Let G be a connected non trivial graph with n vertices and m edges. Let f be
a γ∗dR-function in G. Then

(i) If there is a vertex u ∈ V (G) with f [u] =
∑

x∈Nm(u) f(x) = 2 then f [v] ≥ 4 for every

vertex v ∈ NG(u).

(ii) If there is an edge e ∈ E(G) with f [e] =
∑

x∈Nm(e) f(x) = 2 then f [e′] ≥ 4 for every

edge e′ ∈ E(G) incident with e.

(iii)
∑

v∈V f [v] ≥ 3n and
∑

e∈E f [e] ≥ 3m
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Proof. (i) Let u ∈ V (G) a vertex such that f [u] =
∑

x∈Nm(u) f(x) = 2. Since

2 = f [u] ≥ f(u) then u 6∈ V3. Clearly, if f(u) ∈ {0, 1} then u must be adjacent or

incident to an element xu such that f(u) + f(xu) ≥ 3, because f is an MDRDF, and

hence f [u] should be greater that or equal to 3. Therefore, f [u] = 2 implies that

f(u) = 2 and f(x) = 0 for all x ∈ Nm(u). So, f(v) = 0 for every vertex v ∈ NG(u)

and there must exist an element yv ∈ Nm(v) − u with f(yv) ≥ 2 and we can deduce

that f [v] ≥ f(u) + f(yv) ≥ 4.

(ii) Let e = uv ∈ E(G) an edge such that f [e] = 2. Reasoning as in the previous

case, the only possibility is that f(e) = 2, f(u) = f(v) = 0 and f(e′) = 0 for every

edge e′ incident with e. Since f is an MDRDF and f(e′) = 0 then there are elements

xe′ ∈ Nm(e′), not necessarly different, such that f(xe′) ≥ 2 for all e′ ∈ Nm(e). Finally,

f [e′] ≥ f(e) + f(xe′) ≥ 4.

(iii) It is straightforward deduced from (i) and (ii).

2

Proposition 4. Let G be a connected non trivial graph of order n and size m. Then

γ∗dR(G) ≥
⌈

3(m+ n)

2∆ + 1

⌉
.

This bound is sharp.

Proof. Let f be a γ∗dR-MDRDF in G. First of all, observe that if x ∈ V − (V2 ∪ E2)

then we have that f [x] ≥ 3, because f is an MDRDF. Moreover, if f [x] = 2 for some

x ∈ V ∪ E then by Proposition 2 we have that there must be element y such that

x, y ∈ V or x, y ∈ E and f [y] ≥ 4. Hence, we can derive that
∑

e∈E f [e] ≥ 3|E| = 3m

and
∑

u∈V f [u] ≥ 3|V | = 2n. Then,

3(m+ n) ≤
∑
v∈V

f [v] +
∑

e=uv∈E
f [uv]

=
∑
v∈V

(2d(v) + 1)f(v) +
∑

e=uv∈E
(d(u) + d(v) + 1)f(uv)

≤ (2∆ + 1)

(∑
v∈V

f(v) +
∑

e=uv∈E
f(uv)

)
= (2∆ + 1) γ∗R(G).

For the sharpness, we can consider the star graph G = K1,n−1 for which γ∗dR(G) =

3 =
⌈
3(n−1+n)
2(n−1)+1

⌉
. This concludes the proof.

Proposition 5. For a non-trivial path Pn,

γ∗dR(Pn) =

{
d 6n−3

5
e if n ≡ 0, 3 (mod 5),

d 6n−3
5
e+ 1 if n ≡ 1, 2, 4 (mod 5).
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Proof. Let Pn = v1v2 . . . vn. To prove the upper bound, we define an appro-

priate MRDF on Pn. Let f be the function defined as follows: f(v5k−3) = 3 and

f(v5k−1v5k) = 2 for 1 ≤ k ≤ bn5 c and f(x) = 0 for every x ∈ V ∪E \{v5k−3, v5k−1v5k |
1 ≤ k ≤ bn5 c} except for f(vn−1) = 3 if n ≡ 2, 3 (mod 5), f(vn) = 2 if n ≡ 1

(mod 5), and f(vn) = f(vn−2) = 3 if n ≡ 4 (mod 5). Since f is an MDRDF with

ω(f) = d 6n−35 e if n ≡ 0, 3 (mod 5) and ω(f) = d 6n−35 e+1 otherwise, the upper bound

holds.

Next we prove the lower bound by induction on n. The result is trivial for n =

2, 3, 4, 5, 6. Let n ≥ 7 and let the result hold for any non-trivial path Pn′ with n′ < n.

Let f be a γ∗dR(Pn)-function such that (i) f(vn)+f(vnvn−1) is as small as possible and

(ii) subject to (i), f(vn−2vn−3) is maximized. According Proposition 1 we may assume

that f(x) 6= 1 for each x ∈ V ∪ E. By the choice of f we must have f(vn) ∈ {0, 2}.
We consider two cases.

Case 1. f(vn) = 0.

By the choice of f , we must have f(vn−1) = 3 and f(vn−1vn−2) = f(vn−1) = 0. If

f(vn−2vn−3) = 3, then the function g defined by g(vn−4) = min{f(vn−3 + f(vn−4) +

f(vn−3vn−4), 3} and g(x) = f(x) otherwise, is an MDRDF of Pn−4 and by the in-

duction hypothesis we have ω(f) = 6 + ω(g) ≥ 6 + d 6(n−4)−35 e ≥ 1 + d 6n−35 e. If

f(vn−2vn−3) = 0, then we may assume that f(vn−3vn−4) = 3 and the function g

defined by g(vn−5) = min{f(vn−5 + f(vn−4) + f(vn−5vn−4), 3} and g(x) = f(x) oth-

erwise, is an MDRDF of Pn−5 and by the induction hypothesis we get the result.

Assume that f(vn−2vn−3) = 2.Then we may assume that f(vn−4) ≥ 2 and the func-

tion g defined by g(vn−4) = 3 and g(x) = f(x) otherwise, is an MDRDF of Pn−3 of

weight ω(f)− 4 and the result follows from the induction hypothesis.

Case 2. f(vn) = 2.

By the choice of f , we must have f(vnvn−1) = f(vn−1) = 0. To double Roman

dominate the edge vnvn−1, we must have f(vn−1vn−1) ≥ 2. If f(vn−1vn−1) = 3, then

the function f restricted to Pn−v1 is an MDRDF of Pn−1 of weight ω(f)−2 and the

result follows from the induction hypothesis. Assume that f(vn−1vn−1) = 2. Since f

is an minimum MDRDF of Pn, we must have f(vn−2) = f(vn−2vn−3) = 0. To double

Roman dominate the edge vn−2, we must have f(vn−3) ≥ 2. Since f is an minimum

MDRDF of Pn, we have f(vn−3) = 2. Then the function g defined by g(vn−3) =

g(vn−1) = 3, f(vn) = f(vn−2) = f(vnvn−1) = f(vn−1vn−2) = f(vn−2vn−3) = 0 and

g(x) = f(x) otherwise, is a γ∗dR(Pn)-function which contradicts the choice of f . This

completes the proof. 2

Proposition 6. For n ≥ 3,

γ∗dR(Cn) =

{
d 6n

5
e if n ≡ 0, 2 (mod 5),

d 6n
5
e+ 1 if n ≡ 1, 3, 4 (mod 5).

Proof. Let Cn = (v1v2 . . . vnv1) be the cycle on n vertices. To prove the upper

bound, we define an appropriate MRDF on Pn. Let f be the function defined as
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follows: f(v5k−3) = 3 and f(v5k−1v5k) = 2 for 1 ≤ k ≤ bn5 c and f(x) = 0 for every

x ∈ V ∪ E \ {v5k−3, v5k−1v5k | 1 ≤ k ≤ bn5 c} except for f(vn) = 3 if n ≡ 1, 2

(mod 5), f(vnn−1
) = 3, f(v1vn) = 2 if n ≡ 3 (mod 5), and f(vn) = f(vn−2) = 3 if

n ≡ 4 (mod 5). Since f is an MDRDF with ω(f) = d 6n5 e if n ≡ 0, 2 (mod 5) and

ω(f) = d 6n5 e+ 1 otherwise, the upper bound holds.

In the sequel, we prove the lower bound. According Proposition 4, it is enough we

consider n ≡ 1, 3, 4 (mod 5). We proceed by induction on n. The result is trivial for

n = 3, 4, 5. Let n ≥ 6 and let the result hold for any non-trivial cycle Cn′ with n′ < n.

Let f be a γ∗dR(Pn)-function such that (i) f(v1v2) as large as possible (ii) subject to

i, f(v1) + f(v2) + f(v2v3) + f(v1vn) is as small as possible. According Proposition 1

we may assume that f(x) 6= 1 for each x ∈ V ∪E. Suppose without loss of generality

that f(v1v2) = max{f(vivi+1) | 1 ≤ i ≤ n}. First let f(v1v2) = 3. By the choice

of f we must have f(v1) = f(v2) = f(v2v3) = f(v1vn) = 0. Clearly the function f

restricted to Cn − {v1, v2} is an MDRDF of Cn − {v1, v2} of weight ω(f) − 3. Since

n ≡ 1, 3, 4 (mod 5), we have n− 2 ≡ 1, 2 or 4 (mod 5) and by Proposition 5 we have

ω(f) ≥ d 6(n−2)−35 e+ 1 + 3 = d 6n5 e+ 1 as desired.

Now let f(v1v2) = 2. By the choice of f we must have f(v1) = f(v2) = f(v2v3) =

f(v1vn) = 0. To double Roman dominate v1, vn we have f(v3) ≥ 2 and f(vn) ≥ 2.

Without loss of let f(v3) ≥ f(vn). If n ≡ 1, 4 (mod 5), then the function f restricted

to Cn − {v1, v2, vn} is an MDRDF of the cycle (Cn − {v1, v2, vn}) + v3vn−1 of weight

ω(f)− 4 and by the induction hypothesis we have ω(f) ≥ d 6(n−3)5 e+ 1 + 4 > d 6n5 e+ 1

as desired. Assume that n ≡ 3 (mod 5). Then the function f restricted to Cn−{v1}
is an MDRDF of the cycle (Cn−{v1})+v2vn of weight ω(f)−2 and by the induction

hypothesis we can see that ω(f) ≥ d 6n5 e+ 1.

Finally let f(v1v2) = 0. It follows from (i) that f(x) = 0 for each x ∈ E(G).

Suppose without loss of generality that f(v2) ≥ f(v1). Since f(v2v3) = f(v1vn) = 0,

we must have f(v2) ≥ 2. Suppose first that f(v2) = 3. It follows from (ii)

and f(v1vn) = 0 that f(v1) = 0 and f(vn) = 3 (to double dominate the edge

v1vn). Then the function f restricted to Cn − {v1, vn} is an MDRDF of the cycle

(Cn − {v1, vn}) + v2vn−1 of weight ω(f) − 3 and using the induction hypothesis we

can see that ω(f) ≥ d 6n5 e + 1 as desired. Assume that f(v2) = 2. By our earlier

assumption and to double Roman dominate the edge v1v2 we must have f(v1) = 2.

Since f(v2v3) = f(vnv1) = 0, we must have f(v3), f(vn) ≥ 2. Let f(v3) ≥ f(vn) (the

case f(v3) ≤ f(vn) is similar). Then the function f restricted to Cn − {v1, v2, vn} is

an MDRDF of the cycle (Cn − {v1, v2, vn}) + v3vn−1 of weight ω(f) − 6 and using

the induction hypothesis we can see that ω(f) > d 6n5 e+1. This completes the proof. 2

Acknowledgements. This research is funded by Babol Noshirvani University of

Technology, research grant No. P/M/1094.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were



16 Mixed double Roman domination in graphs

generated or analyzed during the current study.

References

[1] H. Abdollahzadeh Ahangar, T.W. Haynes, and J.C. Valenzuela-Tripodoro, Mixed

Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4,

1443–1454.

https://doi.org/10.1007/s40840-015-0141-1.

[2] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, and I.G. Yero, Total

Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016), no. 2, 501–

517.

[3] M.P. Alvarez-Ruiz, T. Mediavilla-Gradolph, S.M. Sheikholeslami, J.C.

Valenzuela-Tripodoro, and I.G. Yero, On the strong Roman domination num-

ber of graphs, Discrete Appl. Math. 231 (2017), 44–59.

https://doi.org/10.1016/j.dam.2016.12.013.

[4] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, Double Roman domination,

Discrete Appl. Math. 211 (2016), 23–29.

https://doi.org/10.1016/j.dam.2016.03.017.

[5] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman dom-

ination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedet-

niemi, and M.A. Henning, eds.), Springer International Publishing, Cham, 2020,

pp. 365–409.

[6] , Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17

(2020), no. 3, 966–984.

https://doi.org/10.1016/j.akcej.2019.12.001.

[7] , Varieties of roman domination, Structures of Domination in Graphs

(T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer International

Publishing, Cham, 2021, pp. 273–307.

[8] X. Chen, A note on the double Roman domination number of graphs, Czechoslo-

vak Math. J. 70 (2020), no. 1, 205–212.

https://doi.org/10.21136/CMJ.2019.0212-18.

[9] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman

domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.

https://doi.org/10.1016/j.disc.2003.06.004.

[10] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization

problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000),

no. 2, 125–150.

https://doi.org/10.1007/s002249910009.

[11] N. Dehgardi, Mixed Roman domination and 2-independence in trees, Commun.

Comb. Optim. 3 (2018), no. 1, 79–91.

https://doi.org/10.22049/cco.2018.25964.1062.



H. Abdollahzadeh Ahangar, et al. 17

[12] G. Hickey, F. Dehne, A. Rau-Chaplin, and C. Blouin, SPR distance computation

for unrooted trees, Evol. Bioinform. 4 (2008), 17–27.

https://doi.org/10.4137/EBO.S419.

[13] R. Khoeilar, H. Karami, M. Chellali, and S.M. Sheikholeslami, An improved upper

bound on the double Roman domination number of graphs with minimum degree

at least two, Discrete Appl. Math. 270 (2019), 159–167.

https://doi.org/10.1016/j.dam.2019.06.018.

[14] M. Liedloff, T. Kloks, J. Liu, and S.L. Peng, Efficient algorithms for Roman

domination on some classes of graphs, Discrete Appl. Math. 156 (2008), no. 18,

3400–3415.

https://doi.org/10.1016/j.dam.2008.01.011.

[15] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem

in military strategy, Am. Math. Mon. 107 (2000), no. 7, 585–594.

https://doi.org/10.1080/00029890.2000.12005243.

[16] I. Stewart, Defend the Roman empire!, Sci. Am. 281 (1999), no. 6, 136–138.


	Introduction
	Complexity
	Bounds
	References

