Additive closedness in subsets of $\mathbb{Z}_n$

Document Type : Original paper

Authors

1 Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

2 Department of Mathematics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, India

Abstract

The r-value in subsets of finite abelian groups serves as a metric for evaluating the degree of closedness within these subsets. The notion of the r-value is intricately linked to other mathematical constructs such as sum-free sets, Sidon sets, and Schur triples. We extend the definition of r-value of a subset in a finite abelian group and investigate the r-values of subsets of Z_n, by constructing a formula for r-values of intervals consist of consecutive residue classes modulo n.

Keywords

Main Subjects


[1] P.J. Cameron and P. Erd˝os, On the number of sets of integers with various properties, Number Theory (R. Mollin, ed.), De Gruyter, Berlin, Boston, 1990, pp. 61–80.  https://doi.org/10.1515/9783110848632-008
[2] C. Carlet and S. Picek, On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials, Adv. Math. Commun. 17 (2023), no. 6, 1507–1525.  https://doi.org/10.3934/amc.2021064
[3] O. Chervak, O. Pikhurko, and K. Staden, Minimum number of additive tuples in groups of prime order, Electron. J. Combin. 26 (2019), no. 1, Article number: P1.30  https://doi.org/10.37236/7376
[4] J. Cilleruelo, I. Ruzsa, and C. Vinuesa, Generalized sidon sets, Adv. Math. 225 (2010), no. 5, 2786–2807.  https://doi.org/10.1016/j.aim.2010.05.010
[5] B.A. Datskovsky, On the number of monochromatic schur triples, Adv. Appl. Math. Mech. 31 (2003), no. 1, 193–198.  https://doi.org/10.1016/S0196-8858(03)00010-1
[6] R.C. de Amorim, On sum-free subsets of abelian groups, Axioms 12 (2023), no. 8, Article ID: 724.  https://doi.org/10.3390/axioms12080724
[7] C. Elsholtz and L. Rackham, Maximal sum-free sets of integer lattice grids, J. London Math. Soc. 95 (2017), no. 2, 353–372.  https://doi.org/10.1112/jlms.12006
[8] P. Erdös, Extremal problems in number theory, Proc. Sympos. Pure Math. 8 (1965), 181–189.
[9] S. Huczynska, Beyond sum-free sets in the natural numbers, Electron. J. Combin. 21 (2014), no. 1, Article number: P1.21.  https://doi.org/10.37236/2810
[10] S. Huczynska, G.L. Mullen, and J.L. Yucas, The extent to which subsets are additively closed, J. Comb. Theory Ser. A. 116 (2009), no. 4, 831–843.  https://doi.org/10.1016/j.jcta.2008.11.007
[11] B. Klopsch and V.F. Lev, How long does it take to generate a group?, J. Algebra 261 (2003), no. 1, 145–171.  https://doi.org/10.1016/S0021-8693(02)00671-3
[12] H. Liu, G. Wang, L. Wilkes, and D. Yang, Shape of the asymptotic maximum sum-free sets in integer lattice grids, European J. Combin. 107 (2023), Article ID: 103614.  https://doi.org/10.1016/j.ejc.2022.103614
[13] G. Martin and K. O’Bryant, Constructions of generalized sidon sets, J. Comb. Theory Ser. A. 113 (2006), no. 4, 591–607. https://doi.org/10.1016/j.jcta.2005.04.011
[14] A.A. Mullin, On mutant sets, Bull. Math. Biophysics 24 (1962), 209–215.  https://doi.org/10.1007/BF02477427
[15] T. Tao and V. Vu, Sumfree sets in groups: a survey, J. Comb. 8 (2017), 541–552.  https://doi.org/10.4310/JOC.2017.v8.n3.a7
[16] C. Timmons, Regular saturated graphs and sum-free sets, Discrete Math. 345 (2022), no. 1, Article ID: 112659.  https://doi.org/10.1016/j.disc.2021.112659