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Abstract: The r-value in subsets of finite abelian groups serves as a metric for

evaluating the degree of closedness within these subsets. The notion of the r-value is
intricately linked to other mathematical constructs such as sum-free sets, Sidon sets,

and Schur triples. We extend the definition of r-value of a subset in a finite abelian
group and investigate the r-values of subsets of Zn, by constructing a formula for

r-values of intervals consist of consecutive residue classes modulo n.
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1. Introduction

A subset A with cardinality d of a finite abelian group G, is said to be r-closed if

among d2 possible ordered pairs (a, b) with a, b ∈ A, there are exactly r pairs such

that a + b ∈ A. This notion of r-closed set is defined by Sophie et al. in 2009 [10].

The r-value of the r-closed set A is denoted by r(A). Sophie et al. obtained the

fundamental results on r-closed sets and r-values of subsets of Zp in [10].

The concept of r-value set is generalized from sum-free sets of integers. The sum-

free set is a set in which there is no triple (a, b, c) such that a + b = c. In the

context of r-closed sets, if a set is 0-closed then it is a sum-free set. Initially, research
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2 Additive closedness in subsets of Zn

was focused on the cardinality of sum-free sets, specifically on the maximal sum-free

subsets of a given set (see [1, 8]). Renato presented some properties of sum-free abelian

group subsets in 2023, particularly investigating the number of 0-valued subsets and

maximum cardinality of 0-valued subsets in an abelian group [6]. Terence and Vu in

[15] studied sum-free sets in detail and addressed several questions raised by Erdos

in his survey Extremal problems in number theory (Proceedings of the Symp. Pure

Math. VIII AMS) in 1965. Sum-free sets establish a connection in the determination

of the diameter of a finite abelian group concerning its various generating sets [11].

The shape of all sum-free sets is determined in the integer lattice grid (see [7, 12]).

In their work, Carlet and Picek [2] introduced the essential criteria pertaining to

the concepts of sidon sets and sum-free sets in the field of additive combinatorics.

These criteria are crucial for identifying exponents that have the potential to be

Almost Perfect Nonlinear (APN) and can expedite the process of discovering new

APN exponents. Timmons [16] proved the existence of regular F -saturated graphs

for a given graph F when F is a complete graph K4 and K5, and they also presented

some partial results on the large complete graph using 0-valued sets.

A Sidon set A is a set in which every pair of elements has a distinct sum. Suppose A

has cardinality d, and among d2 ordered pairs, if some r pairs have sum in A, then

the Sidon set A is an r-closed set [1]. The generalization of Sidon’s problem on Sidon

set counts the number of pairs where the total of the elements in each pair is fixed

(see [4, 13]). When counting the number of pairs in a r-closed set A, the counting

can be thought of as counting the number of pairs (a, b) in A × A with a + b = c

for a fixed c ∈ A, which is similar to Sidon’s problem. By enumerating overall such

c ∈ A, we get the r-value of A. In [5], Datskovsky discussed the relationship between

an r-closed set A of a finite group G and the enumeration of monochromatic Schur

triples modulo n. Mullin [14] introduced a comprehensive mathematical framework

that explores the concept of a relative anti-closure property for subsets of algebraic

systems. Furthermore, they have developed a mathematical model to analyze popula-

tion dynamics within the framework of the biological concept of mutation. This model

considers Mutant sets, which are algebraically connected to r-closed sets through the

anti-closure property.

In 2014, Sophie extended the study of r-closed sets to N and obtained r-values of

subsets of interval [1, N ] in N [9]. In a subsequent study conducted by Ostap et al.

in 2019, they examined the minimum number of additive tuples in groups of prime

order [3].

The definition of r-value of a set A in a finite abelian group G counts the number of

triplets (a, b, a+ b) ∈ A×A×A. If A is a disjoint union of two or more subsets of G,

say A = ∪ni=1Ai, then the counting of number of triplets can be divided into n3 cases

as (a, b, a + b) ∈ Ai × Aj × Ak, where 1 ≤ i, j, k ≤ n. This motivated us to extend

the definition of r-value of a set in a finite abelian group. Moreover, we observe some

fundamental properties, particularly in Zn, where n is a positive integer. In Section

3, we derive the formula for the r-values of subsets of Zn based on the various possible

subsets form, as discussed in Section 2. Throughout, we will assume that G is a finite
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additive abelian group.

2. r-values of subsets of Zn

Definition 1. For any subsets A,B,C of G, we define r(A,B,C) as the cardinality of
the set {(a, b) |a ∈ A, b ∈ B, a + b ∈ C}.

If A = B, then we denote r(A,B,C) = r(A,C) and if A = B = C then r(A,B,C) =

r(A), which reduce to r-value of A.

Proposition 1. For any subsets A,B,C of G, r(A,B,C) = r(B,A,C).

Proof. Let X = {(a, b) |a ∈ A, b ∈ B, a + b ∈ C}. Since G is abelian (b, a) ∈ X

whenever (a, b) ∈ X, r(A,B,C) = |X| = r(B,A,C).

Example 1. For subsets A = {0, 1, 3}, B = {2, 3, 8, 11} and C = {0, 4, 8, 10, 11, 12} of
Z16, r(A,B,C) = r(B,A,C) = 5.

Definition 2. [10] An interval in Zn is defined to be a subset of Zn consisting
of consecutive residue classes modulo n. The notation [a, b] will denote the interval
{a, a + 1, . . . , b− 1, b} ⊆ Zn.

For the purpose of computation, we treat elements of Zn as least non-negative integers,

and computations carried under modulo n. We use the Definition 2 of an interval in

Zn as defined by Sophie et al. [10]. Also note that we consider interval [a, b] in Zn

with a ≤ b in Z. The following Lemma 1 gives the representation of any subset of Zn

in terms of intervals of Zn.

Lemma 1. Every subset A of Zn can be uniquely written as,

A =

m⋃
i=1

[ai, bi]

with a1 ≤ b1 < a2 ≤ b2 < · · · < am−1 ≤ bm−1 < am ≤ bm, where ai, bi ∈ A ⊆ Zn, for all
i = 1, 2, . . . ,m and ai ≥ bi−1 + 2 for all i = 2, 3, . . . ,m.

Proof. Suppose A is an interval then A = [a, b], where a = min(A) and b = max(A).

Suppose A is not an interval then A = [a, b]\{t1, t2, . . . , tl} with a = min(A), b =

max(A) and a < t1 < t2 < · · · < tl < b. If l = 1 then A = [a, b]\{t1} = [a, t1 − 1] ∪
[t1 + 1, b]. If l = 2 then A = [a, b]\{t1, t2}. If t2 = t1 + 1 then A = [a, b]\{t1, t2} =

[a, t1 − 1] ∪ [t2 + 1, b]. If t2 6= t1 + 1 then A = [a, b]\{t1, t2} = [a, t1 − 1] ∪ [t1 +

1, t2 − 1] ∪ [t2 + 1, b]. Let l ≥ 2 and assume that the result is true for l − 1. Now

suppose A = [a, b]\{t1, t2, . . . , tl} = B\{tl}, where B = [a, b]\{t1, t2, . . . , tl−1}. From
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assumption B =
k⋃

i=1

[ai, bi] with a1 ≤ b1 < a2 ≤ b2 < · · · < ak−1 ≤k−1< ak ≤ bk,

where ai, bi ∈ B ⊆ Zn, for all i = 1, 2, . . . , k and ai ≥ bi−1 + 2 for all i = 2, 3, . . . , k.

Now A = B\{tl} =
(
∪ki=1[ai, bi]

)
\{tl}. Then tl ∈ [ai, bi] for exactly one i. Thus

rewriting this interval using l = 1 case, we get A as the finite disjoint union of

intervals as defined.

Suppose A = ∪ki=1[ai, bi] = ∪lj=1[pj , bj ]. Then by the construction, we have a1 =

min(A) = p1. Now for b1, if b1 < q1, then [a1, b1] ⊂ [p1, q1] and [p1, q1]\[a1, b1] =

{b1 + 1, . . . , q1} ⊂ [a2, b2]. Thus we have b1 + 2 ≤ a2 ≤ b1 + 1 a contradiction. Similar

arguments holds if b1 > q1, and hence b1 = q1.

By continuing similarly, we can deduce that the representations are equal.

Example 2. The subset A = {1, 2, 4, 5, 6, 9, 10, 11, 12} and B = {0, 3, 4, 5, 8, 11, 12, 13, 14}
of Z16 can be written as A = [1, 2] ∪ [4, 6] ∪ [9, 12] and B = [0, 0] ∪ [3, 5] ∪ [8, 8] ∪ [11, 14]
respectively.

Using the above Lemma 1 we investigate the r-value of subsets of Zn by using r-values

of intervals.

Lemma 2. For every subset A of Zn, using representation of A as in Lemma 1, r-value
of A is given by

r(A) =

m∑
i=1

m∑
j=1

m∑
k=1

r([ai, bi], [aj , bj ], [ak, bk]).

Proof. Let S = {(a, b)|a, b ∈ A, a + b ∈ A}. We can write,

S =
⋃
a∈A

⋃
b∈A

{(a, b)|a + b ∈ A}

=
⋃
a∈A

⋃
b∈A

{(a, b)|a + b ∈
m⋃
i=1

[ai, bi]}

=
⋃
b∈A

⋃
a∈A

m⋃
k=1

{(a, b)|a + b ∈ [ak, bk]}.

Now using the union representation of A, a and b can be varied over all the intervals of

A in the above expression. We get S =
m⋃
i=1

m⋃
j=1

m⋃
k=1

{(a, b)|a ∈ [ai, bi], b ∈ [aj , bj ], a+b ∈

[ak, bk]}. Hence r(A) =
m∑
i=1

m∑
j=1

m∑
k=1

r([ai, bi], [aj , bj ], [ak, bk]).
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Corollary 1. For every subset A of Zn, using representation of A as in Lemma 1, r-value
of A is given by

r(A) =

m∑
i=1

r([ai, bi]) +

m∑
i=1

m∑
j=1
j 6=i

r([ai, bi], [aj , bj ]) + 2

m∑
i=1

m∑
j=i+1

m∑
k=1

r([ai, bi], [aj , bj ], [ak, bk]).

To determine r(A) in Zn, it is enough to compute r([ai, bi], [aj , bj ], [ak, bk]) for all com-

binations of intervals in the union representation A =
k⋃

i=1

[ai, bi] along with with the

above result. The formula for each of these r([ai, bi], [aj , bj ], [ak, bk]) will be discussed

in Section 3.

3. r-values interms of intervals

We derive the formula for each r-values that appeared in Lemma 2, by characterising

intervals based on their end points. The following theorem gives the r-value of an

interval in Zn.

Theorem 1. Let [k, l] be an interval in Zn such that 0 ≤ k ≤ l ≤ n− 1. Then

r([k, l]) = 1
2
(l(l + 1) + (k − 1)k)− (2k − 1)(l − k + 1) + (2l − n + 1)(l − n

2
− k + 1).

Proof. Let a, b ∈ [k, l] with (a + b)(mod n) = i ∈ [k, l]. Now for fixed i in [k, l] and

b ≡ i − a(mod n) it is sufficient find all a ∈ [k, l] such that a + b ≡ i(mod n) and

b ∈ [a, b]. We have a + b = i or a + b = n + i. Now from k ≤ b = i − a ≤ l and

k ≤ a ≤ l we have

max{i− l, k} ≤ a ≤ min{i− k, l}. (3.1)

Since k ≤ i ≤ l we have i− l ≤ k and i− k ≤ l. Therefore inequalities in 3.1 becomes

k ≤ a ≤ i − k. That is number of a’s for a fixed i with a + b = i is i − 2k + 1 but

note that i− 2k + 1 is positive only if i ≥ 2k. Hence i varies from 2k to l. Similarly

when a + b = n + i we get i + n − l ≤ a ≤ l and hence number of a’s for a fixed i is

2l − n + 1 − i. Note that 2l − n + 1 − i is positive only if 2l − n ≥ i. Hence i varies

from k to 2l−n. Therefore number of a′s with (a+ b) ≡ i(mod n) whenever i ∈ [k, l]

is given by

r([k, l]) =

l∑
i=2k

(i− 2k + 1) +

2l−n∑
i=k

(2l − n + 1− i). (3.2)

This completes the proof.

Note that each terms inside the summation in the expression (3.2) is greater than

zero. Thus r([k, l]) = 0 whenever l < 2k and 2l − n < k. Hence [k, l] is a sum-free

interval in Zn if and only if l < min{2k, k+n
2 }.
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Theorem 2 to Theorem 5 provide the values of r(A,B,C) when two intervals A,B

and C are identical. The following theorem gives r([k, l], [k, l], [p, q]) = r([k, l], [p, q])

whenever 0 ≤ k ≤ l < p ≤ q ≤ n− 1.

Theorem 2. Let [k, l] and [p, q] are two interval in Zn such that 0 ≤ k ≤ l < p ≤ q ≤ n−1.
Then

r([k, l], [p, q]) =



q∑
i=max{2k,p}

(i− 2k + 1) if q ≤ k + l,

min{q,2l}∑
i=p

(2l + 1− i) if k + l ≤ p.

k+l−1∑
i=max{2k,p}

(i− 2k + 1) +
min{q,2l}∑

i=k+l

(2l + 1− i) if p < k + l < q.

Proof. Let i ∈ [p, q]. The aim is to estimate number of pairs (a, b) ∈ [k, l] × [k, l]

such that a + b ≡ i(mod n). Since i is fixed and b ≡ i − a (mod n) it is sufficient

find all a ∈ [k, l] such that a + b ≡ i (mod n) and b ∈ [k, l]. We have a + b = i or

a+ b = n+ i. First we show that b = n+ i− a is not possible. As if k ≤ n+ i− a ≤ l,

then l < i + (n− l) ≤ a ≤ l a contradiction, hence a + b = i.

Now from k ≤ b = i− a ≤ l and k ≤ a ≤ l we have

max{i− l, k} ≤ a ≤ min{i− k, l}. (3.3)

The rest of the proof is divided into three cases.

Case 1. q ≤ k + l.

Then i ≤ k + l. Hence inequalities in (3.3) become k ≤ a ≤ i− k. That is number of

a’s for a fixed i is i− 2k + 1 but note that i− 2k + 1 is positive only if i ≥ 2k. Hence

r([k, l], [p, q]) =
q∑

i=max{2k,p}
(i− 2k + 1).

Case 2. k + l ≤ p.

Then k ≤ i− l and l ≤ i− k. Hence inequalities in (3.3) become i− l ≤ a ≤ l. That

is number of a’s for a fixed i is 2l + 1 − i but note that 2l + 1 − i is positive only if

i ≤ 2l. Hence r([k, l], [p, q]) =
min{q,2l}∑

i=p

(2l + 1− i).

Case 3. p < k + l < q.

This case follows from the last two cases depending on p ≤ i ≤ k + l − 1 and k + l ≤
i ≤ q. This completes the proof.

The closed form of expressions in Theorem 2 is computed in each case and tabulated

in Table 3. A similar table can be constructed for the forthcoming theorems to

obtain closed form expressions. The following theorem gives r([p, q], [p, q], [k, l]) =

r([p, q], [k, l]) whenever 0 ≤ k ≤ l < p ≤ q ≤ n− 1.
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Table 1. Closed form of the expressions in Theorem 2.

q ≤ k + l k + l ≤ p p < k + l < q

2k ≤ p

and
2l ≤ q

1
2

(q(q + 1) − (p− 1)p)
−(q − p + 1)(2k − 1)

(l − p + 1)(2l + 1)

− 1
2

(p− 1)p
(k + l − 1)(k + l) − 1

2
(p− 1)p

−(k + l − p)(2k − 1) + (1 − k)(2l + 1)

2k ≤ p

and
2l > q

1
2

(q(q + 1) − (p− 1)p)

−(q − p + 1)(2k − 1)

(q − p + 1)(2l + 1)

− 1
2

(q(q+ 1)− (p− 1)p)

(k+ l−1)(k+ l)− 1
2

((p−1)p+(q+1)q)

−(k+l−p)(2k−1)+(q−k−l+1)(2l+1)

2k > p

and

2l ≤ q

1
2
q(q + 1)

−(2k − 1)(q − k + 1)

(l − p + 1)(2l + 1)

− 1
2

(p− 1)p (k+l−1)(k+l)−l(2k−1)+(1−k)(2l+1)

2k > p
and

2l > q

1
2
q(q + 1)

−(2k − 1)(q − k + 1)
(q − p + 1)(2l + 1)
− 1

2
(q(q+ 1)− (p− 1)p)

(k + l − 1)(k + l) − 1
2
q(q + 1)

−l(2k − 1) + (q − k − l + 1)(2l + 1)

Theorem 3. Let [k, l] and [p, q] are two interval in Zn such that 0 ≤ k ≤ l < p ≤ q ≤ n−1.
Then

r([p, q], [k, l]) =



l∑
i=max{2p−n,k}

(i− 2p + n + 1) if l ≤ p + q − n,

min{l,2q−n}∑
i=k

(2q − n + 1− i) if p + q − n ≤ k,

p+q−n−1∑
i=max{2p−n,k}

(i− 2p + n + 1) +
min{l,2q−n}∑

i=p+q−n

(2q − n + 1− i) if k < p + q − n < l.

Proof. Let i ∈ [k, l]. The aim is to estimate number of pairs (a, b) ∈ [p, q] × [p, q]

such that a + b ≡ i(mod n). Since i is fixed and b ≡ i − a (mod n) it is sufficient

find all a ∈ [p, q] such that a + b ≡ i (mod n) and b ∈ [p, q]. We have a + b = i or

a + b = n + i. First we show that b = i− a is not possible. Using p ≤ i− a ≤ q and

i− p < 0, we get a < i− p < 0 a contradiction, hence a + b = n + i.

Now from p ≤ b = i + n− a ≤ q and p ≤ a ≤ q we have

max{i + n− q, p} ≤ a ≤ min{i + n− p, q}. (3.4)

The rest of the proof is divided into three cases.

Case 1. l ≤ p + q − n.

Then i ≤ p + q − n. Hence inequalities in (3.4) become p ≤ a ≤ i + n − p. That is

number of a’s for a fixed i is i − 2p + n + 1 but note that i − 2p + n + 1 is positive

only if i ≥ 2p− n. Hence r([p, q], [k, l]) =
l∑

i=max{2p−n,k}
(i− 2p + n + 1).

Case 2. p + q − n ≤ k.

Then p ≤ i+n−q and q ≤ i+n−p. Hence inequalities in (3.4) become i+n−q ≤ a ≤ q.

That is number of a’s for a fixed i is 2q − n + 1 − i but note that 2q − n + 1 − i is

positive only if i ≤ 2q − n. Hence r([p, q], [k, l]) =
min{l,2q−n}∑

i=p

(2q − n + 1− i).
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Case 3. k < p + q − n < l. This case follows from the last two cases depending on

k ≤ i ≤ p + q − n− 1 and p + q − n ≤ i ≤ l. This completes the proof.

The following proposition provides a condition for 0-value in a two-interval case.

Proposition 2. Let [k, l] and [p, q] are two interval in Zn such that 0 ≤ k ≤ l < p ≤ q ≤
n− 1.

1. If q < 2k, then r([k, l], [p, q]) = 0.

2. If 2l < p, then r([k, l], [p, q]) = 0.

3. If l < 2p− n, then r([p, q], [k, l], ) = 0.

4. If 2q − n < k, then r([p, q], [k, l]) = 0.

The proof directly follows from Theorem 2 and Theorem 3.

The following theorem gives r([k, l], [p, q], [k, l]) whenever 0 ≤ k ≤ l < p ≤ q ≤ n− 1.

Theorem 4. Let [k, l] and [p, q] are two interval in Zn such that 0 ≤ k ≤ l < p ≤ q ≤ n−1.
Then r([k, l], [p, q], [k, l]) =

(l + q − n + 1)( 1
2
(l + q − n)− (k − 1)) + 1

2
(k − 1)k if l + p− n ≤ k,

0 if l ≤ l + p− n,

(q − p + 1)((l − n) + p + q − k + 1)− 1
2
(q2 − p2 + p + q) if k < l + p− n < l.

Proof. Let i ∈ [k, l]. We count the number of pairs (a, b) ∈ [k, l] × [p, q] such that

a+b ≡ i(mod n). Since i is fixed and b ≡ i−a (mod n) it is sufficient find all a ∈ [k, l]

such that a + b ≡ i (mod n) and b ∈ [p, q]. We have a + b = i or a + b = n + i. First

we show that b = i − a is not possible. Using p ≤ i − a ≤ q and i − p < 0, we get

a < i− p < 0 a contradiction, hence a + b = n + i.

Now from p ≤ b = i + n− a ≤ q and k ≤ a ≤ l we have

max{i + n− q, k} ≤ a ≤ min{i + n− p, l}. (3.5)

Now using k+ q ≤ i+n inequalities in (3.5) become i+n− q ≤ a ≤ min{i+n−p, l}.
The rest of the proof is divided into three cases.

Case 1. l + p− n ≤ k.

Then l ≤ i + n − p. Hence inequalities in (3.5) become i + n − q ≤ a ≤ l. That is

number of a’s for a fixed i is l+ q−n+ 1− i but note that l+ q−n+ 1− i is positive

only if i ≤ l + q − n. Hence r([k, l], [p, q], [k, l]) =
l+q−n∑
i=k

(l + q − n + 1− i).

Case 2. l ≤ l + p− n.

Then n < p a contradiction. Hence l ≤ l + p− n is not possible.
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Case 3. k < l + p− n < l.

Then for all i ∈ [k, l], we have either k ≤ i ≤ l+p−n−1 or l+p−n ≤ i ≤ l. Whenever

k ≤ i ≤ l+p−n−1, then inequalities in (3.5) become i+n−q ≤ a ≤ i+n−p. That is

number of a’s for a fixed i is q−p+1. The case l+p−n ≤ i ≤ l is follows from the case

l+p−n ≤ k. Hence r([k, l], [p, q], [k, l]) =
l+p−n−1∑

i=k

(q−p+1)+
l+q−n∑

i=l+p−n
(l+q−n+1−i).

This completes the proof.

The following theorem gives r([k, l], [p, q], [p, q]) whenever 0 ≤ k ≤ l < p ≤ q ≤ n− 1.

Theorem 5. Let [k, l] and [p, q] are two interval in Zn such that 0 ≤ k ≤ l < p ≤ q ≤ n−1.
Then r([k, l], [p, q], [p, q]) =

1
2
q(q + 1)− (p + k − 1)(q − 1

2
(p + k) + 1) if q ≤ p + l,

(q − p + 1)(1− k) if p + l ≤ p,
1
2
(p + l − 1)(p + l)− (p + k − 1)( 1

2
(p− k) + l) + (q − p− l + 1)(l − k + 1) if p < p + l < q.

Proof. Let i ∈ [p, q]. We count the number of pairs (a, b) ∈ [k, l] × [p, q] such that

a+b ≡ i(mod n). Since i is fixed and b ≡ i−a (mod n) it is sufficient find all a ∈ [k, l]

such that a + b ≡ i (mod n) and b ∈ [p, q]. We have a + b = i or a + b = n + i. Now

from k ≤ a = n + i− b ≤ l and p ≤ b ≤ q we have

max{n + i− l, p} ≤ b ≤ min{n + i− k, q}. (3.6)

Since i − k > 0 and i − l > 0, inequalities in (3.6) become n + i − l ≤ b ≤ q. But

then q < n < n + (i− l) ≤ q. Hence the case a + b = i + n is not possible. Now from

k ≤ a = i− b ≤ l and p ≤ b ≤ q we have

max{i− l, p} ≤ b ≤ min{i− k, q}. (3.7)

Note that i− k < q. Therefore inequalities in (3.7) become max{i− l, p} ≤ b ≤ i− k.

The rest of the proof is divided into three cases.

Case 1. q ≤ p + l.

Then i ≤ p + l. Hence inequalities in (3.7) become p ≤ b ≤ i− k. That is number of

a’s for a fixed i is i− k− p+ 1 but note that i− k− p+ 1 is positive only if i ≥ k + p.

Hence r([k, l], [p, q], [p, q]) =
q∑

i=k+p

(i− k − p + 1).

Case 2. p + l ≤ p.

Then p ≤ i− l and hence inequalities in (3.7) become i ≤ b ≤ i− k. That is number

of a’s for a fixed i is l − k + 1. Also using p + l ≤ p we must have l = 0. Hence

r([k, l], [p, q], [p, q]) = (q − p + 1)(1− k).

Case 3. p < p + l < q.

This case follows from the last two cases depending on p ≤ i ≤ p+l−1 and p+l ≤ i ≤ q.

This completes the proof.
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We derive the formula of r([k, l], [p, q], [s, t]) in the following theorem.

Theorem 6. Let [k, l], [p, q] and [s, t] are three interval in Zn such that 0 ≤ k ≤ l < p ≤
q < s ≤ t ≤ n− 1.

1. If t ≤ k + q, then r([k, l], [p, q], [s, t]) =



t∑
i=max{s,p+k}

(i− p− k + 1) if t ≤ p + l,

(t− s + 1)(l − k + 1) if p + l ≤ s,
p+l−1∑

i=max{s,p+k}
(i− p− k + 1) + (t− p− l + 1)(l − k + 1) if s < p + l < t.

2. If k + q ≤ s, then r([k, l], [p, q], [s, t]) =



(t− s + 1)(q − p + 1) if t ≤ p + l,
min{l+q,t}∑

i=s

(l + q + 1− i) if p + l ≤ s,

(p + l − s)(q − p + 1) +
min{l+q,t}∑

i=p+l

(l + q + 1− i) if s < p + l < t.

3. If s < k + q < t, then r([k, l], [p, q], [s, t]) =

k+q−1∑
i=max{s,p+k}

(i− p− k + 1) + (t− k − q + 1)(q − p + 1) if t ≤ p + l,

(k + q − s)(l − k + 1) +
min{l+p,t}∑

i=k+q

(l + q + 1− i) if p + l ≤ s,

l+p∑
i=max{s,p+k}

(i− p− k + 1) + (k + q − l − p)(l − k + 1) +
min{l+q,t}∑
i=k+q+1

(l + q + 1− i) if p + l ≤ k + q,

k+q∑
i=max{s,p+k}

(i− p− k + 1) + (l + p− k − q)(q − p + 1) +
min{l+q,t}∑
i=l+p+1

(l + q + 1− i) if k + q < p + l.

Proof. Let i ∈ [s, t]. Goal is to find number of pairs (a, b) ∈ [k, l] × [p, q] such that

a+ b ≡ i(mod n). Since i is fixed and b ≡ i−a(mod n) it is sufficient find all a ∈ [k, l]

such that a+ b ≡ i(mod n) and b ∈ [p, q]. We have a+ b = i or a+ b = n+ i. First we

show that b = n+ i− a is not possible. As if p ≤ n+ i− a ≤ q, then k < i+ (n− q) ≤
a ≤ i + (n − p) but l < i + (n − q). Thus we have i + n − q ≤ a ≤ l < i + n − q a

contradiction, hence a + b = i. Now from p ≤ b = i− a ≤ q and k ≤ a ≤ l we have

max{i− q, k} ≤ a ≤ min{i− p, l}. (3.8)

1. Given t ≤ k + q. Hence i − q ≤ k and inequalities in (3.8) become k ≤ a ≤
min{i− p, l}. The rest of the proof is divided into three cases.

Case 1. t ≤ p + l.

Then i − p ≤ l. Hence inequalities in (3.8) become k ≤ a ≤ i − p. That is
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number of a’s for a fixed i is i− p− k + 1 but note that i− p− k + 1 is positive

only if i ≥ p + k. Hence r([k, l], [p, q], [s, t]) =
t∑

i=max{s,p+k}
(i− p− k + 1).

Case 2. p + l ≤ s.

Then l ≤ i − p. Equivalently a can assume any value in [k, l] that is a has

l − k + 1 choices. Thus r([k, l], [p, q], [s, t]) = (t− s + 1)(l − k + 1).

Case 3. s < p + l < t.

This case follows from the last two cases depending on s ≤ i ≤ p + l − 1 and

p + l ≤ i ≤ t.

2. Let k + q ≤ s. Then k ≤ i − q and inequalities in (3.8) become i − q ≤ a ≤
min{i− p, l}. Now the min{i− p, l} is decided based on p + l and [s, t].

If t ≤ p+ l, then i− p ≤ l. Hence inequalities in (3.8) become i− q ≤ a ≤ i− p.

That is number of a’s for a fixed i is q − p + 1. Hence r([k, l], [p, q], [s, t]) =

(t− s + 1)(q − p + 1). Let p + l ≤ s. Then l ≤ i− p. Hence inequalities in (3.8)

become i− q ≤ a ≤ l. That is number of a’s for a fixed i is l− i+ q− 1 but note

that l − i + q − 1 is positive only if l + q − 1 ≥ i. Hence r([k, l], [p, q], [s, t]) =
min{l+q,t}∑

i=s

(l − i + q + 1). Finally let s < p + l < t. This case follows from the

last two cases depending on s ≤ i ≤ p + l − 1 and p + l ≤ i ≤ t.

3. Given s < k + q < t. Then for all i ∈ [s, t] we have either s ≤ i ≤ k + q − 1 or

k + q ≤ i ≤ t. Hence combining cases 1 and 2 we arrive at the desired formula.

The following theorem gives r([k, l], [s, t], [p, q]) whenever 0 ≤ k ≤ l < p ≤ q < s ≤
t ≤ n− 1.

Theorem 7. Let [k, l], [p, q] and [s, t] are three interval in Zn such that 0 ≤ k ≤ l < p ≤
q < s ≤ t ≤ n− 1. Then r([k, l], [s, t], [p, q]) = 0.

Proof. We show that for any i ∈ [p, q] there is no pairs (a, b) ∈ [k, l]× [s, t] such that

a + b ≡ i(mod n). Let i ∈ [p, q]. Using s ≤ b = i− a ≤ t and k ≤ a ≤ l we have

max{i− t, k} ≤ a ≤ min{i− s, l}. (3.9)

Since i − t < 0 and i − s < 0 inequalities in (3.9) become k ≤ a ≤ i − s. But then

i− s < 0 ≤ k. Hence a+ b = i not possible. Similarly using s ≤ b = n+ i− a ≤ t and

k ≤ a ≤ l we have

max{i + n− t, k} ≤ a ≤ min{i + n− s, l}. (3.10)

Then using k < i+n−t and l < i+n−s, inequalities in (3.10) become i+n−t ≤ a ≤ l.

But then l < i + n− t. Hence a + b = n + i not possible.
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Suppose a subset A of Zn is represented by A = ∪mi=1[ai, bi]. In the computation

of r(A), using Theorem 7 r([ai, bi], [aj , bj ], [ak, bk]) are zero whenever i < k and

j > k for all k between 2 and m − 1. Moreover number of such combinations are
m(m−1)(m−2)

6 . Hence these formulas can be directly avoided in the Corollary 1 to

compute r(A).

The following Theorem 8 give the r-value r([p, q], [s, t], [k, l]), where [k, l], [p, q] and

[s, t] are three interval in Zn with 0 ≤ k ≤ l < p ≤ q < s ≤ t ≤ n− 1.

Theorem 8. Let [k, l], [p, q] and [s, t] are three interval in Zn such that 0 ≤ k ≤ l < p ≤
q < s ≤ t ≤ n− 1.

1. If l ≤ p− n + t, then r([p, q], [s, t], [k, l]) =

l∑
i=max{s+p−n,k}

(i + n− s− p + 1) if l ≤ q − n + s,

(l − k + 1)(q − p + 1) if q − n + s ≤ k,
q−n+s∑

i=max{s+p−n,k}
(i + n− s− p + 1) + (l − q + n− s)(q − p + 1) if k < q − n + s < l.

2. If p− n + t ≤ k, then r([p, q], [s, t], [k, l]) =

(l − k + 1)(t− s + 1) if l ≤ q − n + s,
min{l,q−n+t}∑

i=k

(q − n + t + 1− i) if q − n + s ≤ k,

(q − n + s− k + 1)(t− s + 1) +
min{l,q−n+t}∑
i=q−n+s+1

(q − n + t + 1− i) if k < q − n + s < l.

3. If k < p− n + t < l, then r([p, q], [s, t], [k, l]) =

p−n+t∑
i=max{s+p−n,k}

(i + n− s− p + 1) + (l − p + n− t + 1)(t− s + 1) if l ≤ q − n + s

(p− n + t− k + 1)(q − p + 1) +
min{l,q−n+t}∑

i=p−n+t

(q − n + t + 1− i) if q − n + s ≤ k

q−n+s∑
i=max{s+p−n,k}

(i + n− s− p + 1) + (p + t− q − s)(q − p + 1) +
min{l,q−n+t}∑
i=p−n+t+1

(q − n + t + 1− i) if q − n + s ≤ p− n + t

p−n+t∑
i=max{s+p−n,k}

(i + n− s− p + 1) + (q + s− p− t)(t− s + 1) +
min{l,q−n+t}∑
i=q−n+s+1

(q − n + t + 1− i) if q − n + s > p− n + t.

Proof. Let i ∈ [k, l]. Goal is to find number of pairs (a, b) ∈ [p, q] × [s, t] such that

a+ b ≡ i(mod n). Since i is fixed and b ≡ i−a(mod n) it is sufficient find all a ∈ [p, q]

such that a + b ≡ i(mod n) and b ∈ [s, t]. We have a + b = i or a + b = n + i. Note

that i < a. Therefore b = i− a is not possible. Now from s ≤ b = i + n− a ≤ t and

p ≤ a ≤ q we have

max{i + n− t, p} ≤ a ≤ min{i + n− s, q}. (3.11)

1. Given l ≤ p − n + t. Hence i + n − t ≤ p and inequalities in (3.11) become

p ≤ a ≤ min{i + n− s, q}. The rest of the proof is divided into three cases.

Case 1. l ≤ q − n + s.

Then i+n−s ≤ q. Hence inequalities in (3.11) become p ≤ a ≤ i+n−s. That is

number of a’s for a fixed i is i+n−s−p+1 but note that i+n−s−p+1 is positive
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only if i ≥ s+p−n. Hence r([p, q], [s, t], [k, l]) =
l∑

i=max{s+p−n,k}
(i+n−s−p+1).

Case 2. q − n + s ≤ k.

Then q ≤ i + n− s. Equivalently a can assume any value in [p, q] that is a has

q − p + 1 choices. Thus r([p, q], [s, t], [k, l]) = (l − k + 1)(q − p + 1).

Case 3. k < q − n + s < l .

This case follows from the last two cases depending on k ≤ i ≤ q − n + s and

q − n + s + 1 ≤ i ≤ l.

2. Let p − n + t ≤ k. Then p ≤ i + n − t and inequalities in (3.11) become

i + n− t ≤ a ≤ min{i + n− s, q}. Now the min{i + n− s, q} is decided based

on q − n + s and [k, l].

If l ≤ q − n + s, then i + n − s ≤ q. Hence inequalities in (3.11) become

i + n− t ≤ a ≤ i + n− s. That is number of a’s for a fixed i is t− s + 1. Hence

r([p, q], [s, t], [k, l]) = (l−k+1)(t−s+1). Let q−n+s ≤ k. Then q ≤ i+n−s.

Hence inequalities in (3.11) become i + n − t ≤ a ≤ q. That is number of a’s

for a fixed i is q− i− n+ t+ 1 but note that q− i− n+ t+ 1 is positive only if

q−n+ t ≥ i. Hence r([p, q], [s, t], [k, l]) =
min{l,q−n+t}∑

i=k

(q−n+ t+ 1− i). Finally

let k < q − n + s < l . This case follows from the last two cases depending on

k ≤ i ≤ q − n + s and q − n + s + 1 ≤ i ≤ l.

3. Given k < p−n+t < l. Then for all i ∈ [k, l] we have either k ≤ i ≤ p−n+t−1

or p−n+ t ≤ i ≤ l. Hence combining cases 1 and 2 in three respective sub-cases

we arrive the desired formula.

The following example illustrates the estimation of the r-value of a subset of Zn using

the formulas obtained in Section 3.

Example 3. Let A = {1, 2, 4, 5, 6, 9, 10, 11, 12} be a subset of Z16. As A is the union of
three intervals A = [1, 2] ∪ [4, 6] ∪ [9, 12], the r-value of A is obtained by summing all the
r-values r(A1, A2, A3), where A1, A2, A3 are all combinations of three intervals. (see Table
3). We get r(A) = 43. For instance, r([9, 12], [9, 12], [4, 6]) in Z16 is calculated using Theorem
3. Given that k = 4, l = 6, p = 9, q = 12, n = 16 and that k < p + q − n < l, we can apply
3rd case of the Theorem 3 to obtain r([9, 12], [9, 12], [4, 6]) =

∑4
i=4(i−1)+

∑6
i=5(9− i) = 10.

Also note that r([1, 2], [9, 12], [4, 6]) and r([9, 12], [1, 2], [4, 6]) are not listed in the Table 3 as
they vanishes as per Theorem 7.

4. Conclusion

The study determined the r-value of subsets of Zn by obtaining the formula for r-

value of intervals in Zn. These formulas can be used to classify subsets based on their
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Table 2. Computation of r-value of A.

Interval combinations r-value

r([k, l])

r([1, 2]) 1

r([4, 6]) 0
r([9, 12]) 0

r([k, l], [p, q])

r([1, 2], [4, 6]) 1

r([1, 2], [9, 12]) 0

r([4, 6], [9, 12]) 8

r([p, q], [k, l])

r([4, 6], [1, 2]) 0

r([9, 12], [1, 2]) 1
r([9, 12], [4, 6]) 10

r([k, l], [p, q], [k, l])
r([1, 2], [4, 6], [1, 2]) = r([4, 6], [1, 2], [1, 2]) 2×0
r([1, 2], [9, 12], [1, 2]) = r([9, 12], [1, 2], [1, 2]) 2×0

r([4, 6], [9, 12], [4, 6]) = r([9, 12], [4, 6], [4, 6]) 2×0

r([k, l], [p, q], [p, q])
r([1, 2], [4, 6], [4, 6]) = r([4, 6], [1, 2], [4, 6]) 2×3
r([1, 2], [9, 12], [9, 12]) = r([9, 12], [1, 2], [9, 12]) 2×5
r([4, 6], [9, 12], [9, 12]) = r([9, 12], [4, 6], [9, 12]) 2×0

r([k, l], [p, q], [s, t]) r([1, 2], [4, 6], [9, 12]) = r([4, 6], [1, 2], [9, 12]) 2×0

r([p, q], [s, t], [k, l]) r([4, 6], [9, 12], [1, 2]) = r([9, 12], [4, 6], [1, 2]) 2×3

Total 43

r-values. Further, these results can be used to construct sum-free subsets of Zn. In

the future, one can use these results to study Sidon sets, Schur triples, etc.
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