[1] M. Afkhami and K. Khashyarmanesh, The cozero divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011), no. 5, 753–762.
[2] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. 35 (2012), no. 4, 935–944.
[3] M. Afkhami and K. Khashyarmanesh, Planar, outerplanar, and ring graph of the cozero-divisor graph of a finite
commutative ring, J. Algebra Appl. 11 (2012), no. 6, Article ID: 1250103.
https://doi.org/10.1142/S0219498812501034
[4] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs and comaximal graphs of commutative rings, J. Algebra Appl. 12 (2013), no. 3, Article ID: 1250173.
https://doi.org/10.1142/S0219498812501733
[6] S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra 42 (2014), no. 4, 1594–1605.
[7] M. Bakhtyiari, R. Nikandish, and M.J. Nikmehr, Coloring of cozero-divisor graphs of commutative von Neumann regular rings, Proc. Math. Sci. 130 (2020), no. 1, Article ID: 49.
https://doi.org/10.1007/s12044-020-00569-5
[8] D.M. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2009.
10] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz 103 (1978), 1–22.
[11] H. Kober, On the arithmetic and geometric means and on Hölder’s inequality, Proceedings of the American Mathematical Society 9 (1958), no. 3, 452–459.
https://doi.org/10.2307/2033003
[12] X. Li, Y. Shi, and I. Gutman, Graph Energy, Springer, New York, 2012.