[1] S. Alikhani, D. Fatehi, and C.M. Mynhardt, On $k$-total dominating graphs, Australas. J. Combin. 73 (2019), no. 2, 313––333.
[4] E. Connelly, K.R. Hutson, S.T. Hedetniemi, and T.W. Haynes, A note on $\gamma$-graphs, AKCE Int. J. Graphs Comb. 8 (2011), no. 1, 23–31.
[6] P. Eakawinrujee and N. Trakultraipruk, $\gamma$-paired dominating graphs of paths, Int. J. Math. Comput. Sci. 17 (2022), no. 2, 739–752.
[7] P. Eakawinrujee and N. Trakultraipruk, $\gamma$-paired dominating graphs of lollipop, umbrella and coconut graphs, Electron. J. Graph Theory Appl. 11 (2023), no. 1, 65–79.
http://dx.doi.org/10.5614/ejgta.2023.11.1.6
[9] G. Fricke, S. Hedetniemi, S. Hedetniemi, and K. Hutson, γ-graphs of graphs, Discuss. Math. Graph Theory 31 (2011), no. 3, 517–531.
https://doi.org/10.7151/dmgt.1562
[12] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[13] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York,
1998.
[14] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000), no. 1, 21–45.
[15] S.A. Lakshmanan, A. Vijayakumar, and S. Arumugam, The gamma graph of a graph, AKCE Int. J. Graphs Comb. 7 (2010), no. 1, 53–59.
[17] C.M. Mynhardt and L.E. Teshima, A note on some variations of the γ-graph, J. Comb. Math. Comb. Comput. 104 (2018), 217—-230.
[18] R. Samanmoo, N. Trakultraipruk, and N. Ananchuen, $\gamma$-independent dominating graphs of paths and cycles, Maejo Int. J. Sci. Technol. 13 (2019), no. 3, 245–256.
[19] S. Sanguanpong and N. Trakultraipruk, $\gamma$-induced-paired dominating graphs of paths and cycles, Discrete Math. Algorithms Appl. 14 (2022), no. 8, Article ID: 2250047.
https://doi.org/10.1142/S1793830922500471