[1] A. Aggarwal, A. Mehra, and S. Chandra, Application of linear programming with i-fuzzy sets to matrix games with i-fuzzy goals, Fuzzy Optim. Decis. Making 11 (2012), no. 4, 465–480.
https://doi.org/10.1007/s10700-012-9123-z
[3] Z. Bashir, J. Wątróbski, T. Rashid, W. Sałabun, and J. Ali, Intuitionistic-fuzzy goals in zero-sum multi criteria matrix games, Symmetry 9 (2017), no. 8, Article ID:158
https://doi.org/10.3390/sym9080158
[6] H. Bigdeli and H. Hassanpour, A satisfactory strategy of multiobjective two person matrix games with fuzzy payoffs, Iran. J. Fuzzy Syst. 13 (2016), no. 4, 17–33.
https://doi.org/10.22111/ijfs.2016.2593
[7] H. Bigdeli and H. Hassanpour, An approach to solve multi-objective linear production planning games with fuzzy parameters, Yugosl. J. Oper. Res. 28 (2018), no. 2, 237–248.
[9] M. Bisht and R. Dangwal, Fuzzy ranking approach to bi-matrix games with interval payoffs in marketing-management problem, Int. Game Theory Rev. 25 (2023), no. 1, Article ID: 2250016.
https://doi.org/10.1142/S0219198922500165
[10] A. Chakeri, J. Habibi, and Y. Heshmat, Fuzzy type-2 nash equilibrium, Computational Intelligence for Modelling Control & Automation, 2008 International Conference on IEEE, 2008, pp. 398–402.
https://doi.org/10.1109/CIMCA.2008.214
[12] J.C. Figueroa-García, E.J. Medina-Pinzón, and J.D. Rubio-Espinosa, Non-cooperative Games Involving Type-2 Fuzzy Uncertainty: An Approach, Computer Information Systems and Industrial Management (Berlin, Heidelberg) (K. Saeed
and V. Snášel, eds.), Springer Berlin Heidelberg, 2014, pp. 387–396.
[13] J.C. Figueroa-García, A. Mehra, and S. Chandra, Optimal solutions for group matrix games involving interval-valued fuzzy numbers, Fuzzy Sets and Systems 362 (2019), 55–70.
https://doi.org/10.1016/j.fss.2018.07.001
[17] E. Hosseinzadeh, H. Hassanpour, and M. Arefi, A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs, Soft Comput. 19 (2015), no. 5, 1143–1151.
https://doi.org/10.1007/s00500-014-1328-3
[18] D. Hunwisai and P. Kumam, Linear programming model for solution of matrix game with payoffs trapezoidal intuitionistic fuzzy number, Bull. Comput. Appl. Math. 5 (2017), no. 1, 9–32.
[20] S. Karmakar, M. R. Seikh, and O. Castillo, Type-2 intuitionistic fuzzy matrix games based on a new distance measure: Application to biogas-plant implementation problem, Appl. Soft Comput. 106 (2021), Article ID: 107357.
https://doi.org/10.1016/j.asoc.2021.107357
[22] D. F. Li and J. C. Liu, A parameterized nonlinear programming approach to solve matrix games with payoffs of i-fuzzy numbers, IEEE Trans. Fuzzy Syst. 23 (2015), no. 4, 885–896.
https://doi.org/10.1109/TFUZZ.2014.2333065
[23] S. Li and G. Tu, Bi-matrix games with general intuitionistic fuzzy payoffs and application in corporate environmental behavior, Symmetry 14 (2022), no. 4, Article ID: 671.
https://doi.org/10.3390/sym14040671
[24] V. Mazalov, Mathematical game theory and applications, John Wiley & Sons, 2014.
[25] J. M. Mendel, Computing with words, when words can mean different things to different people, Proc. of Third International ICSC Symposium on Fuzzy Logic and Applications, 1999, pp. 158–164.
[29] J. X. Nan, D. F. Li, and J. J. An, Solving bi-matrix games with intuitionistic fuzzy goals and intuitionistic fuzzy payoffs, J. Intell. Fuzzy Syst. 33 (2017), no. 6, 3723–3732.
[31] P. K. Nayak and M. Pal, Bi-matrix games with intuitionistic fuzzy goals, Iran. J. Fuzzy Syst. 7 (2010), no. 1, 65–79.
[32] P. K. Nayak and M. Pal, Bi-matrix games with intuitionistic fuzzy goals, Iran. J. Fuzzy Syst. 7 (2010), no. 1, 65–79.
[33] I. Nishizaki and M. Sakawa, Equilibrium solutions for multiobjective bimatrix games incorporating fuzzy goals, J. Optim. Theory Appl. 86 (1995), no. 2, 433–457.
https://doi.org/10.1007/BF02192089
[35] I. Nishizaki and M. Sakawa, Fuzzy and Multiobjective Games for Conflict Resolution, Springer-Verlag, Berlin Heidelberg, 2001.
[36] J. S. Patiño Callejas, K. Y. Espinosa-Ayala, and J. C. Figueroa-García, Type-2 fuzzy uncertainty in goal programming, Proceedings of the 2015 International Conference on Fuzzy Logic in Artificial Intelligence, vol. 1424, 2015, pp. 21–25.
[38] M. R. Seikh, S. Karmakar, and O. Castillo, A novel defuzzification approach of type-2 fuzzy variable to solving matrix games: An application to plastic ban problem, Iran. J. Fuzzy Syst. 18 (2021), no. 5, 155–172.
https://doi.org/10.22111/ijfs.2021.6262
[39] M. R. Seikh, S. Karmakar, and P. K. Nayak, Matrix games with dense fuzzy payoffs, Int. J. Intell. Syst. 36 (2021), no. 4, 1770–1799.
https://doi.org/10.1002/int.22360
[41] M. R. Seikh, P. K. Nayak, and M. Pal, Aspiration level approach to solve matrix games with i-fuzzy goals and i-fuzzy pay-offs, Pac. Sci. Rev. A: Natural Science and Engineering 18 (2016), no. 1, 5–13.
https://doi.org/10.1016/j.psra.2016.03.001
[43] R. Verma, N. Singla, and R.R. Yager, Matrix games under a pythagorean fuzzy environment with self-confidence levels: formulation and solution approach, Soft Comput. (In press),
https://doi.org/10.1007/s00500-023-08785-7
[47] C. Xu, F. Meng, and Q. Zhang, PN equilibrium strategy for matrix games with fuzzy payoffs, J. Intelligent &Amp; Fuzzy Systems, 32, (2017), no. 3, 2195-2206.
[48] W. Xue, Z. Xu, and X. J. Zeng, Solving matrix games based on ambika method with hesitant fuzzy information and its application in the counter-terrorism issue, Appl. Intell. 51 (2021), no. 3, 1227–1243.
https://doi.org/10.1007/s10489-020-01759-4
[50] H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, 1991.