On e-Super (a, d)-Edge Antimagic Total Labeling of Total Graphs of Paths and Cycles

Document Type : Original paper

Authors

1 Department of Mathematics and Actuarial Science, B.S. Abdur Rahman Crescent Institute of Science and Technology.

2 Department of Mathematic, D.B. Jain College, Chennai - 600097, Tamil Nadu, India

Abstract

A $(p, q)$-graph $G$ is  {\it $(a, d)$-edge antimagic total} if there exists a bijection $f$ from $V(G) \cup E(G)$ to $\{1, 2, \dots, p+q\}$ such that for each edge $uv \in E(G)$, the edge weight $\Lambda(uv) = f(u) + f(uv) + f(v)$ forms an arithmetic progression with first term $a > 0$ and common difference $d \geq 0$. An $(a, d)$-edge antimagic total labeling in which the vertex labels are $1, 2, \dots, p$ and edge labels are $p+1, p+2, \dots, p+q$ is called a {\it super} $(a, d)$-{\it edge antimagic total labeling}. Another variant of $(a, d)$-edge antimagic total labeling called as e-super $(a, d)$-edge antimagic total labeling in which the edge labels are $1, 2, \dots, q$ and vertex labels are $q+1, q+2, \dots, q+p$. In this paper, we investigate the  existence of e-super $(a, d)$-edge antimagic total labeling for total graphs of paths, copies of cycles and disjoint union of cycles.

Keywords

Main Subjects


[1] M. Bača, E.T. Baskoro, and R. Simanjuntak, Super edge-antimagic labelings of the generalized Petersen graph $P\left( n, \lfloor \frac{n-1}{2} \rfloor \right)$, Util. Math. 70 (2006), 119–127.
[2] M. Bača, Y. Lin, M. Miller, and M.Z. Youssef, Edge-antimagic graphs, Discrete Mathe. 307 (2007), no. 11-12, 1232–1244.
https://doi.org/10.1016/j.disc.2005.10.038
[3] M. Bača, Y. Lin, and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007), 117–128.
[4] M. Bača, J. MacDougall, F. Bertault, M. Miller, R. Simanjuntak, and Slamin, Vertex-antimagic total labelings of graphs, Discuss. Math. Graph Theory 23 (2003), no. 1, 67–83.
http://doi.org/10.7151/dmgt.1186
[5] M. Bača and M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions, Universal Publishers, 2008.
[6] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, graphentheorie III, Wagner and R. Bodendiek (eds.), Mannhein (1993).
[7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb. 18 (2021), Article ID: #DS6.
[8] F. Harary, Graph Theory, Addison-Wesley Publishing Company, 1994.
[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, 1990.
[10] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), no. 4, 451–461.
https://doi.org/10.4153/CMB-1970-084-1
[11] Y. Lin, M. Miller, R. Simanjuntak, and Slamin, Magic and antimagic labelings of wheels, Proceedings of Eleventh Australasian Workshop of Combinatorial Algorithm (Australia) (J. Akiyama, E.T. Baskoro, and M. Kano, eds.), Hunter Valley,
2000.
[12] R. Simanjuntak, F. Bertault, and M. Miller, Two new $(a, d)$-antimagic graph labelings, Proceedings of Eleventh Australasian Workshop of Combinatorial Algorithm (Australia) (J. Ryan, ed.), Hunter Valley, 2000, pp. 179–189.
[13] K.A. Sugeng, M. Miller, and M. Barithm (Australia) (J. Akiyama, E.T. Baskoro, and M. Kano, eds.), Hunter Valley,
2000.
[14] K.A. Sugeng, M. Miller, and M. Barithm, Super antimagic total labeling of graphs, Util. Math. 76 (2008), 161–171.
[15] K.A. Sugeng, M. Miller, Slamin, and M. Bača, $(a, d)$-edge-antimagic total labelings of caterpillars, Combinatorial Geometry and Graph Theory (Berlin, Heidelberg) (J. Akiyama, E.T. Baskoro, and M. Kano, eds.), Springer Berlin Heidelberg,
2005, pp. 169–180.
https://doi.org/10.1007/978-3–540-30540-8 19
[16] K.A. Sugeng and W. Xie, Construction of super edge magic total graphs, Proceedings of Sixteenth Australasian Workshop of Combinatorial Algorithm (Australia) (J. Ryan, ed.), Ballarat, 2005, pp. 303–310.