[1] A.E. Brouwer and W.H. Haemers, Spectra of graphs, Springer Science & Business Media, 2011.
[2] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math. 85 (2009), no. 105, 19–33.
https://doi.org/10.2298/PIM0999019C
[4] M.A.A. de Freitas, N.M.M. de Abreu, R.R. Del-Vecchio, and S. Jurkiewicz, Infinite families of $Q$-integral graphs, Linear Algebra Appl. 432 (2010), no. 9, 2352–2360.
https://doi.org/10.1016/j.laa.2009.06.029
[5] R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd edition, Cambridge university press, 2013.
[6] A.F. Novanta, L. de Lima, and C.S. Oliveira, $Q$-integral graphs with at most two vertices of degree greater than or equal to three, Linear Algebra Appl. 614 (2021), 144–163.
https://doi.org/10.1016/j.laa.2020.03.027
[12] S. Pirzada and S. Khan, On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph, Comput. Appl. Math. 42 (2023), no. 4, Article number: 152.
https://doi.org/10.1007/s40314-023-02290-1
[13] S. Pirzada, B. Rather, R.U. Shaban, and T. Chishti, Signless Laplacian eigenvalues of the zero divisor graph associated to finite commutative ring ZpM1qM2 , Commun. Comb. Optim. 8 (2023), no. 3, 561–574.
https://doi.org/10.22049/cco.2022.27783.1353
[14] S. Pirzada, R.U. Shaban, H.A. Ganie, and L. de Lima, On the Ky Fan norm of the signless Laplacian matrix of a graph, Comput. Appl. Math. 43 (2024), no. 1, Article number: 26.
https://doi.org/10.1007/s40314-023-02561-x