[1] T. Abualrub, N. Aydin, and P. Seneviratne, On -cyclic codes over , Australas. J. Combin 54, no. 2. 115–126.
[2] N. Aydin and T. Asamov, The database of codes, available at http://quantumcodes.info/Z4 (accessed at January 5, 2024).
[7] D. Boucher and F. Ulmer, Codes as modules over skew polynomial rings, Cryptography and Coding: 12th IMA International Conference, Cryptography and Coding 2009, Cirencester, UK, December 15-17, 2009. Proceedings 12 (M.G.
Parker, ed.), Springer, 2009, pp. 38–55.
[10] A.R. Calderbank, A.R. Hammons Jr, P.V. Kumar, N.J.A. Sloane, and P. Solé, The -linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inf. Theory 40 (1994), no. 2, 301–319.
[11] J. Gao, F.W. Fu, and Y. Gao, Some classes of linear codes over and their applications to construct good and new Z4 linear codes, Appl. Algebra Engrg. Comm. Comput. 28 (2016), no. 2, 131–153.
https://doi.org/10.1007/s00200-016-0300-0
[13] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge university press, New York, 2003.
[15] A.B. Irwansyah, S.T. Dougherty, A. Muchlis, I. Muchtadi-Alamsyah, P. Solé, D. Suprijanto, and O. Yemen, -cyclic codes over , Int. J. Comput. Math. Comput. Syst. Theory 1 (2016), no. 1, 14–31.
[18] B.R. McDonald, Finite Rings with Identity, Marcel Dekker Inc., New York, 1974.
[21] E. Prange, Cyclic Error-correcting Codes in Two Symbols, AFCRC-TN, Air Force Cambridge Research Center, 1957.
[24] Z.X. Wan, Quaternary Codes, vol. 8, World Scientific, Singapore, 1997.