[1] T. Abualrub, N. Aydin, and P. Seneviratne, On $\theta$-cyclic codes over $\mathbb{F}_2+v\mathbb{F}_2$, Australas. J. Combin 54, no. 2. 115–126.
[2] N. Aydin and T. Asamov, The database of $\mathbb{Z}_4$ codes, available at http://quantumcodes.info/Z4 (accessed at January 5, 2024).
[3] R.K. Bandi and M. Bhaintwal, Codes over $\mathbb{Z}_4+v\mathbb{Z}_4$, 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2014, pp. 422–427.
https://doi.org/10.1109/ICACCI.2014.6968489
[4] N. Benbelkacem, M.F. Ezerman, T. Abualrub, N. Aydin, and A. Batoul, Skew cyclic codes over $\mathbb{F}_4{R}$, J. Algebra Appl. 21 (2022), no. 4, Article ID: 2250065.
https://doi.org/10.1142/S0219498822500657
[7] D. Boucher and F. Ulmer, Codes as modules over skew polynomial rings, Cryptography and Coding: 12th IMA International Conference, Cryptography and Coding 2009, Cirencester, UK, December 15-17, 2009. Proceedings 12 (M.G.
Parker, ed.), Springer, 2009, pp. 38–55.
[10] A.R. Calderbank, A.R. Hammons Jr, P.V. Kumar, N.J.A. Sloane, and P. Solé, The $\mathbb{Z}_4$-linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inf. Theory 40 (1994), no. 2, 301–319.
[11] J. Gao, F.W. Fu, and Y. Gao, Some classes of linear codes over $\mathbb {Z}_4+v\mathbb {Z}_4$ and their applications to construct good and new Z4 linear codes, Appl. Algebra Engrg. Comm. Comput. 28 (2016), no. 2, 131–153.
https://doi.org/10.1007/s00200-016-0300-0
[12] F. Gursoy, I. Siap, and B. Yildiz, Construction of skew cyclic codes over $\mathbb{F}_q + v\mathbb{F}_q$, Adva. Math. Commun. 8 (2014), no. 3, 313–322.
https://doi.org/10.3934/amc.2014.8.313
[13] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge university press, New York, 2003.
[15] A.B. Irwansyah, S.T. Dougherty, A. Muchlis, I. Muchtadi-Alamsyah, P. Solé, D. Suprijanto, and O. Yemen, $\Theta_S$-cyclic codes over $A_k$, Int. J. Comput. Math. Comput. Syst. Theory 1 (2016), no. 1, 14–31.
[18] B.R. McDonald, Finite Rings with Identity, Marcel Dekker Inc., New York, 1974.
[20] S. Patel and O. Prakash, $(\theta,\delta_{\theta})$-Cyclic codes over $\mathbb{F}_q[u,v]/ \langle u^2-u, v^2-v uv-vu \rangle$, Des. Codes Cryptogr. 90 (2021), no. 11, 2763–2781.
https://doi.org/10.1007/s10623-021-00964-7
[21] E. Prange, Cyclic Error-correcting Codes in Two Symbols, AFCRC-TN, Air Force Cambridge Research Center, 1957.
[22] A. Sharma and M. Bhaintwal, A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation, Adv. Math. Commun. 12, no. 4, 723–739.
https://doi.org/10.3934/amc.2018043
[24] Z.X. Wan, Quaternary Codes, vol. 8, World Scientific, Singapore, 1997.