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Abstract: In this work, we study a class of skew cyclic codes over the ring R :=

Z4 + vZ4, where v2 = v, with an automorphism θ and a derivation ∆θ, namely codes
as modules over a skew polynomial ring R[x; θ,∆θ], whose multiplication is defined

using an automorphism θ and a derivation ∆θ. We investigate the structures of a skew

polynomial ring R[x; θ,∆θ]. We define ∆θ-cyclic codes as a generalization of the notion
of cyclic codes. The properties of ∆θ-cyclic codes as well as dual ∆θ-cyclic codes are

derived. As an application, some new linear codes over Z4 with good parameters are

obtained by Plotkin sum construction, also via a Gray map as well as residue and
torsion codes of these codes.
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1. Introduction

Cyclic codes are an important class of codes from both theoretical and practical

viewpoints. Theoretically, cyclic codes have a rich mathematical theory, in particular,

they have additional algebraic structures to make, practically, the process of encoding

and decoding cyclic codes is more efficient.

Cyclic codes over finite fields were first studied by Prange [21] in 1957. Since then,

many coding theorists have made significant progress in studying cyclic codes for both
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the so-called random-error correction and burst-error correction (See, for example, [13]

for the detailed description of random-error and burst-error correction).

In 2007, Boucher, Geiselmann, and Ulmer [6] (see also [8],[7]) extended the notion

of cyclic codes over finite fields by using generator polynomials in non-commutative

skew polynomial rings. The new notion of codes is called skew cyclic codes over finite

fields. In general, a skew polynomial ring is not a unique factorization ring. In this

case, there are typically more factors of xn − 1 in this ring than in the commutative

case. Hence, there are more skew cyclic codes than cyclic codes over finite fields. This

new class of codes increases the number of possibilities for finding codes with good

parameters. Boucher, Geiselmann, and Ulmer [6] also give many examples of codes

that improve the previously best-known linear codes over finite fields.

Later, the notion of skew cyclic codes over finite fields was generalized to the skew

cyclic codes over several kinds of finite rings. Abualrub, Aydin, and Seneviratne [1]

considered skew cyclic codes over F2 + vF2, where v2 = v, and constructed optimal

self-dual codes over this ring. Gursoy, Siap, and Yildiz [12] investigated structural

properties of skew cyclic codes over Fq+vFq, with v2 = v. They [12] showed that skew

cyclic codes over the ring are principally generated. Later, the first author together

with his coauthors considered structural aspects of skew cyclic codes over the rings

Ak [15] and Bk [16] (c.f. [14]), respectively. Very recently, Benbelkacem, Ezerman,

Abualrub, Aydin, and Batoul [4] considered the skew cyclic codes over the mixed

alphabet which are also a finite ring, denoted by F4R, where R = F4 + vF4 with

v2 = v. They [4] showed a natural connection between the skew cyclic codes over the

ring to DNA codes.

In the next development, Boucher and Ulmer [9] generalized the notion of skew cyclic

codes over finite fields to the skew cyclic codes over finite fields with derivation. They

[9] also constructed MDS as well as MRD codes from certain families of the skew

cyclic codes (see Section 4.3 in [9]). Sharma and Bhaintwal [22] extended the study of

these skew cyclic codes over a finite ring, namely over the ring Z4 +uZ4, with u2 = 1.

They obtained numerous linear codes over Z4 with good parameters using residue

codes, Plotkin sum, or the Gray map they defined [22]. Very recently, Patel and

Prakash [20] have investigated the same object over the ring Fq + uFq + vFq + uvFq,
with u2 = u and v2 = v, where q is a prime power. By the decomposition method,

they [20] obtained several optimal linear codes over Fq.
Continuing the study of [22] and [20], in this paper, we investigate a class of skew

cyclic codes with derivation over the ring Z4 + vZ4, with v2 = v. We derive several

structural properties of skew cyclic codes with derivation over the ring Z4 + vZ4. As

a by-product, we construct many new linear codes over Z4 with good parameters.

The organization of the paper is as follows. In Section 2, we provide some definitions

and basic facts related to the ring Z4 + vZ4 and also the linear codes over the ring

Z4 + vZ4. We also define a Gray map from Z4 + vZ4 to Z2
4, which can be extended

naturally to define the Gray map from (Z4 + vZ4)n to Z2n
4 . Several properties of

the skew-polynomial ring (Z4 + vZ4)[x; θ,∆θ] are derived. The notion of ∆θ-cyclic

codes, as well as dual of ∆θ-cyclic codes as a generalization of cyclic codes together
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with their properties are investigated in Section 3 and Section 4, respectively. Several

examples of linear codes over Z4 with good parameters obtained by using the Plotkin

sum construction, a Gray map, or residue and torsion codes of these classes of codes

are provided in Section 5. The paper is ended with concluding remarks. We follow

[13] for undefined terms in coding theory.

2. Preliminaries

In this section, we present some definitions together with some basic facts regarding

the ring Z4 + vZ4, linear codes over the ring, and the skew-polynomial ring (Z4 +

vZ4)[x; θ,∆θ] that is required in the next sections.

2.1. The ring Z4 + vZ4

Let R := Z4 + vZ4 = {a + bv : a, b ∈ Z4}, with v2 = v. This ring is isomorphic to a

polynomial ring, namely R ∼=
Z4[v]

〈v2 − v〉
. An element a + bv ∈ R is a unit if and only

if a and a+ b both are units in Z4. Since the units of Z4 are 1 and 3, the units of R

are 1, 3, 1 + 2v, and 3 + 2v. Hence, the non-units of R are

{0, 2, v, 2v, 3v, 1 + v, 1 + 3v, 2 + v, 2 + 2v, 2 + 3v, 3 + v, 3 + 3v}.

R is a principal ideal ring with 7 non-trivial ideals, namely

〈2v〉 = {0, 2v},
〈2 + 2v〉 = {0, 2 + 2v},

〈2〉 = {0, 2, 2v, 2 + 2v},
〈v〉 = {0, v, 2v, 3v} = 〈3v〉,

〈3 + v〉 = {0, 1 + 3v, 2 + 2v, 3 + v} = 〈1 + 3v〉,
〈1 + v〉 = {0, 2, 2v, 1 + v, 1 + 3v, 2 + 2v, 3 + v, 3 + 3v} = 〈3 + 3v〉,
〈2 + v〉 = {0, 2, v, 2v, 3v, 2 + v, 2 + 2v, 2 + 3v} = 〈2 + 3v〉.

The maximal ideals of R are 〈1 + v〉 and 〈2 + v〉. Hence, R is a semi-local ring. For

more information on the structures of the ring R = Z4 + vZ4, the reader can refer to

[3], [11], and [17].

2.2. Linear codes over R

Lee weight is an important weight to consider on Z4. For x ∈ Z4, the Lee weight of

x, denoted by wL(x), is defined as wL(0) = 0, wL(1) = 1 = wL(3), wL(2) = 2. The

Lee weight for any vector (r0, r1, . . . , rn−1) ∈ Zn4 is defined as the rational sum of Lee

weights of its coordinates, namely wL((r0, r1, . . . , rn−1)) = wL(r0) + wL(r1) + · · · +
wL(rn−1). Define a Gray map φ : R −→ Z2

4 as

φ(a+ bv) = (a, a+ b).
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The Gray weight wG(a+bv) for any a+bv ∈ R is defined as wG(a+bv) = wL(φ(a+bv)).

The Gray weights of the elements of R are given as follows.

x 0 1 2 3 v 2v 3v 1 + v

wG(x) 0 2 4 2 1 2 1 3

x 1 + 2v 1 + 3v 2 + v 2 + 2v 2 + 3v 3 + v 3 + 2v 3 + 3v

wG(x) 2 1 3 2 3 1 2 3

The Gray map φ is extended naturally to Φ : Rn −→ Z2n
4 as

Φ((a0 + b0v, a1 + b1v, . . . , an−1 + bn−1v)) = (a0, a0 + b0, a1, a1 + b1, . . . , an−1, an−1 + bn−1),

and the Gray weight of any vector x ∈ Rn is defined as the rational sum of Gray

weights of its coordinates.

A code C of length n over R is a non-empty subset of Rn. A code C is called linear

over R if it is an R-submodule of Rn. A linear code over R is called free if it is

free as an R-submodule. The Gray distance of any vectors x,y ∈ Rn is defined as

dG(x,y) = wG(x − y) and the Lee distance of any vectors x,y ∈ Zn4 is defined as

dL(x,y) = wL(x − y). The minimum Gray distance dG(C) and the minimum Lee

distance dL(C) of C is defined as dG(C) := min{dG(x,y) : x,y ∈ C, x 6= y} and

dL(C) := min{dL(x,y) : x,y ∈ C, x 6= y}, respectively. It is easy to verify that the

Gray map Φ is a distance-preserving map (isometry) from (Rn, dG) to (Z2n
4 , dL).

A (linear) code over the ring Z4 is defined similarly. We write the parameters of a

linear code C over Z4 as [n, 4k12k2 , dL], where n is the length of C, |C| = 4k12k2 , and

dL = dL(C). Moreover, following Hammons, Kumar, Calderbank, Sloane, and Solé

[10] (cf. [24]), we say that the code C is of type 4k12k2 . For a linear code C ⊆ Rn over

R, we define the residue code Res(C) and the torsion code Tor(C) of C, respectively,

as

Res(C) := {a : a + bv ∈ C, for some b ∈ Zn4 },

and
Tor(C) := {b : bv ∈ C}.

We note that Res(C) and Tor(C) are linear codes of length n over Z4. Regarding the

residue and torsion codes, we have the following property.

Lemma 1. Let C be a free linear code of length n over R and {c1, c2, . . . , ck}, with
ci = ai + biv, be a basis of C. Then the following statements hold:

(1) Res(C) is a free linear code over Z4 with {a1,a2, . . . ,ak} as a basis.

(2) Tor(C) is a free linear code over Z4 with {a1 + b1,a2 + b2, . . . ,ak + bk} as a basis.
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Proof. We prove only part (1).

Let a ∈ Res(C). Then there exists b ∈ Zn4 such that a+bv ∈ C. Since {c1, c2, . . . , ck}
is a basis of C, there exist r1, r2, . . . , rk ∈ R, with ri = si + tiv, for i ∈ [1, k]Z, such

that

a + bv =

k∑
i=1

siai +

(
k∑
i=1

(sibi + tiai + tibi)

)
v,

which means a =

k∑
i=1

siai, and {a1,a2, . . . ,ak} generates Res(C). Next, suppose

on the contrary that {a1,a2, . . . ,ak} is linearly dependent. It is easy to prove that

{c1, c2, . . . , ck} is also linearly dependent, a contradiction. Therefore, {a1,a2, . . . ,ak}
must be linearly independent and we conclude that {a1,a2, . . . ,ak} is a basis of

Res(C).

Similarly, we obtain the following theorem.

Theorem 1. If C be a free linear code of length n over R having a basis {c1, c2, . . . , ck},
then {Φ(c1),Φ(c1v), Φ(c2),Φ(c2v), . . . ,Φ(ck),Φ(ckv)} is a basis of a free linear code Φ(C).

2.3. Skew-polynomial ring R[x; θ,∆θ]

We first recall the definition of a derivation on a finite ring R following [9].

Definition 1. Let R be a finite ring and Θ : R −→ R be an automorphism on R. Then
a map ∆Θ : R −→ R is called a derivation on R if the following two conditions are satisfied:

(i) ∆Θ(x+ y) = ∆Θ(x) + ∆Θ(y), and

(ii) ∆Θ(xy) = ∆Θ(x)y + Θ(x)∆Θ(y).

Let R be a finite ring with an automorphism Θ and a derivation ∆Θ. The skew-

polynomial ring R[x; Θ,∆Θ] is the set of all polynomials over R with ordinary addition

of polynomials and multiplication defined by

xa := Θ(a)x+ ∆Θ(a),

for any a ∈ R. This multiplication is extended to all polynomials in R[x; Θ,∆Θ] in

the usual manner. This kind of ring was introduced by Ore [19] in 1933, where R is

the finite field Fq. See also McDonald [18].

Consider a map θ : R −→ R defined by θ(a + bv) = a + b − bv. It is easy to see

that θ defines an automorphism of R. Moreover, since for all a + bv ∈ R we have

θ2(a+ bv) = a+ bv, we conclude that the order of θ is 2.
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Lemma 2. For all x ∈ R, a map ∆θ : R −→ R such that

∆θ(x) = (1 + 2v)(θ(x)− x)

defines a derivation on R.

Proof. Straightforward by definition.

We prove several properties related to the derivation ∆θ on R. We begin with the

following that can be derived by a routine computation.

Lemma 3. Let ∆θ(x) = (1 + 2v)(θ(x) − x) be a derivation on R. Then the following
statements hold:

(1) ∆θθ + θ∆θ ≡ 0.

(2) ∆θ∆θ ≡ 0.

(3) for all x ∈ R, ∆θ(x) = 0 ⇐⇒ θ(x) = x.

Lemma 4. For all a ∈ R, we have x2a = ax2.

Proof. Since xa = θ(a)x+ ∆θ(a),

x2a = xθ(a)x+ x∆θ(a)

= (θ2(a)x+ ∆θ(θ(a)))x+ θ(∆θ(a))x+ ∆2
θ(a)

= θ2(a)x2 + ((∆θθ + θ∆θ)(a))x+ ∆2
θ(a)

= ax2 (by Lemma 3).

We can generalize Lemma 4 using mathematical induction.

Corollary 1. For all a ∈ R, n ∈ Z+, we have

xna =

{
(θ(a)x+ ∆θ(a))xn−1, if n is odd,

axn, if n is even.

Proof. We know that xa = θ(a)x + ∆θ(a) and x2a = ax2. Suppose the above

statement holds for all n ≤ k, with k ≥ 2. Consider two cases. If k + 1 is even, then

k − 1 is also even. From the induction hypothesis,

xk+1a = x2(xk−1a) = x2axk−1 = (ax2)xk−1 = axk+1.
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If k + 1 is odd, then k is even. Again, from the induction hypothesis,

xk+1a = x(xka) = x(axk) = (xa)xk = (θ(a)x+ ∆θ(a))xk.

Then the result follows.

Let Rθ be a subset of R, fixed element-wise by θ, namely Rθ := {a ∈ R : θ(a) = a}.
It is easy to verify that Rθ is a subring of R. In our case, Rθ = {0, 1, 2, 3} = Z4. Also,

for all a ∈ Rθ, we have ∆θ(a) = 0. It implies, by Corollary 1, that for all a ∈ Rθ and

n ∈ Z+, we have xna = axn.

Definition 2. A polynomial f(x) ∈ R[x; θ,∆θ] is called a central element if it satisfies

f(x)a(x) = a(x)f(x),

for all a(x) ∈ R[x; θ,∆θ]. The center of R[x; θ,∆θ], denoted by Z(R[x; θ,∆θ]), is defined as

Z(R[x; θ,∆θ]) := {f(x) ∈ R[x; θ,∆θ] : f(x)a(x) = a(x)f(x), for all a(x) ∈ R[x; θ,∆θ]}.

The central element satisfies the following property.

Theorem 2. f(x) ∈ Z(R[x; θ,∆θ]) if and only if f(x) ∈ Rθ[x] and for all odd integers i,
the coefficient of xi is equal to 0.

Proof. (=⇒) Let f(x) = f0 + f1x+ f2x
2 + · · ·+ fkx

k. Observe that

xf(x) =
k∑
i=0

(xfi)x
i =

k∑
i=0

(θ(fi)x+ ∆θ(fi))x
i = ∆θ(f0) +

k∑
i=1

(θ(fi−1) + ∆θ(fi))x
i + θ(fk)xk+1

and
f(x)x = f0x+ f1x

2 + · · ·+ fkx
k+1.

Since f(x) is a central element, xf(x) = f(x)x, which implies

∆θ(f0) = 0, (2.1)

θ(fi−1) + ∆θ(fi) = fi−1, for 1 ≤ i ≤ k, (2.2)

θ(fk) = fk. (2.3)

The Equation (2.3) implies fk ∈ Rθ. By Lemma 3 we have ∆θ(fk) = 0. By substituting

the Equation (2.2) repeatedly we obtain f1, f2, . . . , fk−1 ∈ Rθ. Moreover, by Equation

(2.1) and Lemma 3 obtain f0 ∈ Rθ. Thus, f(x) ∈ Rθ[x].
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Now, take a = v ∈ R. Observe that

af(x) = af0 + af1x+ · · ·+ afkx
k and f(x)a = f0a+

k∑
i=1

fi(x
ia).

In this case, for 0 ≤ 2j < k, the coefficient of x2j in af(x) and f(x)a is equal to af2j

and f2ja + f2j+1∆θ(a), respectively. Since f(x) is a central element and ∆θ(a) = 1,

we conclude that f2j+1 = 0.
(⇐=) Let f(x) = f0 +f2x2 +f4x4 + · · ·+f2mx2m ∈ Rθ[x]. Let a(x) = a0 +a1x+a2x2 + · · ·+akx

k ∈
R[x; θ,∆θ]. Observe that

(f2ix
2i)(ajx

j) = f2i(x
2iaj)x

j = f2iajx
2i+j ,

and
(ajx

j)(f2ix
2i) = aj(x

jf2i)x
2i

=

{
ajθ(f2i)x

2i+j + aj∆θ(f2i)x
2i+j−1, if j is odd,

ajf2ix
2i+j , if j is even,

= ajf2ix
2i+j (by Lemma 3).

Then (f2ix
2i)(ajx

j) = (ajx
j)(f2ix

2i), for all i, j. Hence, f(x)a(x) = a(x)f(x), for all

a(x) ∈ R[x; θ,∆θ].

We end this section by establishing the right-division algorithm below.

Lemma 5 (Right-Division Algorithm). Let f(x), g(x) ∈ R[x; θ,∆θ] such that the
leading coefficient of g(x) is a unit. Then there exist q(x), r(x) ∈ R[x; θ,∆θ] such that

f(x) = q(x)g(x) + r(x),

with r(x) = 0 or deg r(x) < deg g(x).

Proof. Similar to the proof of Theorem 2.8 in [22] and Theorem 1 in [20].

3. ∆θ-cyclic codes over R

For f(x) a polynomial of degree n in R[x; θ,∆θ], let

〈f(x)〉 = {a(x)f(x) : a(x) ∈ R[x; θ,∆θ]}.

It is easy to see that R[x; θ,∆θ]/〈f(x)〉 is a left module over R[x; θ,∆θ], where the
scalar multiplication is defined by

r(x) (a(x) + 〈f(x)〉) := r(x)a(x) + 〈f(x)〉.

Definition 3. A code C ⊆ Rn is called a ∆θ-linear code of length n over R if C is a left
R[x; θ,∆θ]-submodule of R[x; θ,∆θ]/〈f(x)〉 for f(x) ∈ R[x; θ,∆θ] a polynomial of degree n.
If f(x) is a central element, then C is called a central ∆θ-linear code.
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Definition 4. A code C ⊆ Rn is called a ∆θ-cyclic code of length n over R if C is a
∆θ-linear code and for all c = (c0, c1, . . . , cn−1) ∈ C we have

T∆θ (c) := (θ(cn−1) + ∆θ(c0), θ(c0) + ∆θ(c1), . . . , θ(cn−2) + ∆θ(cn−1)) ∈ C.

Here, T∆θ is called a ∆θ-cyclic shift operator.

Remark 1. If θ is the identity automorphism and ∆θ ≡ 0, then we obtain a (usual) cyclic
code. Hence, the ∆θ-cyclic code is a generalization of a cyclic code. Moreover, recall that
if θ is the identity automorphism and ∆θ ≡ 0, then a linear code C ⊆ Rn is called quasi-
cyclic of index k (k is a divisor of n) if for all c ∈ C, we have T k∆θ (c) ∈ C. Here T k∆θ (c) =
(T∆θ ◦ T∆θ ◦ · · · ◦ T∆θ )︸ ︷︷ ︸

k

(c), the composition of k numbers of ∆θ-cyclic shift operator.

For our purpose, to convert the algebraic structures of ∆θ-cyclic codes into combina-

torial structures and vice versa, we consider the following correspondence:

R[x; θ,∆θ]/〈f(x)〉 −→ Rn,

c0 + c1x+ c2x2 + · · ·+ cn−1xn−1 7−→ (c0, c1, . . . , cn−1).

From now on, let Rn,∆θ
:= R[x; θ,∆θ]/〈xn − 1〉.

Lemma 6. If c(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 ∈ Rn,∆θ is identified by a codeword
c = (c0, c1, . . . , cn−1) ∈ Rn, then xc(x) ∈ Rn,∆θ is identified by T∆θ (c) ∈ Rn.

Proof. We have

xc(x) = x

(
n−1∑
i=0

cix
i

)

=

n−1∑
i=1

(θ(ci−1) + ∆θ(ci))x
i + (θ(c−1) + ∆θ(c0)) (denoting that c−1 = cn−1)

=

n−1∑
i=0

(θ(ci−1) + ∆θ(ci))x
i.

It means that xc(x) is identified by T∆θ
(c) ∈ Rn.

Lemma 7. A code C ⊆ Rn is ∆θ-cyclic code if and only if C is a left R[x; θ,∆θ]-submodule
of Rn,∆θ .

Proof. (=⇒) Since C is a ∆θ-linear code, (C,+) is a subgroup of (Rn,∆θ
,+), and

for any c ∈ C, identified by c(x) ∈ Rn,∆θ
, we have T∆θ

(c) ∈ C. By Lemma 6,

T∆θ
(c) ∈ C can be identified by xc(x) ∈ Rn,∆θ

. Inductively, we obtain xic(x) ∈ C,
for all i ∈ Z+. By the linearity of the scalar multiplication, we have a(x)c(x) ∈ C for

all a(x) ∈ R[x; θ,∆θ]. Hence, C is a left submodule of Rn,∆θ
.

(⇐=) If C is a left submodule of Rn,∆θ
, then for all c ∈ C, identified by c(x) ∈ Rn,∆θ

,

we have xc(x) ∈ C. By Lemma 6, xc(x) can be identified by T∆θ
(c) ∈ Rn. Hence,

T∆θ
(c) ∈ C, which implies that C is a ∆θ-cyclic code.



506 Skew cyclic codes over Z4 + vZ4 with derivation

Corollary 2. If C ⊆ Rn is a ∆θ-cyclic code of even length n, then C is an ideal of
Rn,∆θ .

Proof. Since n is even, by Theorem 2, xn − 1 is a central element. Then for all

a(x) ∈ R[x; θ,∆θ], we have a(x)(xn− 1) = (xn− 1)a(x). Then 〈xn− 1〉 is a two-sided

ideal of R[x; θ,∆θ]. Since C is a left submodule of Rn,∆θ
, C is an ideal of Rn,∆θ

.

Lemma 8. Let C ⊆ Rn be a ∆θ-cyclic code. Then the following two statements hold.

(1) C is a cyclic code of length n over R if n is odd;

(2) C is a quasi-cyclic code of length n and index 2 over R if n is even.

Proof. (1) If n is odd, then there exists b ∈ Z such that 2b = n + 1. Let c =
(c0, c1, . . . , cn−1) ∈ C be a codeword identified by c(x) = c0 + c1x+ c2x

2 + · · ·+
cn−1x

n−1 ∈ Rn,∆θ
. It is clear that x2bc(x) ∈ C. Observe that

x2bc(x) = x2b
n−1∑
i=0

cix
i =

n−1∑
i=0

(x2bci)x
i =

n−1∑
i=0

cix
n+1+i =

n−1∑
i=0

ci−1x
i (denoting that c−1 = cn−1).

Note that x2bci = cix
2b is derived from Corollary 1. The equation

above says that the codeword x2bc(x) ∈ C can be identified by the vector

(cn−1, c0, c1, . . . , cn−2) ∈ C. Thus, C is a cyclic code.

(2) Observe that for every vector c = (c0, c1, . . . , cn−1) ∈ C identified by the poly-

nomial c(x) = c0 + c1x + c2x
2 + · · · + cn−1x

n−1 ∈ Rn,∆θ
we have x2c(x) ∈ C.

By the similar way as in part (1), we can show that x2c(x) can be identified by

(cn−2, cn−1, c0, . . . , cn−3) ∈ C. Then C is a quasi-cyclic code of index 2.

Lemma 9. If C ⊆ Rn is a ∆θ-cyclic code and g(x) is a nonzero polynomial in C of
smallest degree with leading coefficient is a unit, then the following three statements hold.

(1) C = 〈g(x)〉.

(2) g(x) is a right divisor of xn − 1.

(3) {g(x), xg(x), . . . , xn−k−1g(x)} is a basis of C, with k = deg(g(x)).

Proof. (1) It is clear that 〈g(x)〉 ⊆ C. Let c(x) ∈ C. By the right-division algo-

rithm, there exist q(x), r(x) ∈ R[x; θ,∆θ] such that

c(x) = q(x)g(x) + r(x),

with r(x) = 0 or deg(r(x)) < deg(g(x)). Since C is a left submodule of Rn,∆θ

over R[x; θ,∆θ], r(x) = c(x)− q(x)g(x) ∈ C. Moreover, since g(x) is a nonzero

polynomial of smallest degree, r(x) = 0. Thus, c(x) = q(x)g(x) ∈ 〈g(x)〉, and

hence C ⊆ 〈g(x)〉.
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(2) Again, by right-division algorithm, there exist q(x), r(x) ∈ R[x; θ,∆θ] such that

xn − 1 = q(x)g(x) + r(x),

with r(x) = 0 or deg(r(x)) < deg(g(x)). By the same argument with above, we

have xn − 1 = q(x)g(x). It means that g(x) is is a right divisor of xn − 1.

(3) From the above result, let xn − 1 = h(x)g(x), for some h(x) ∈ R[x; θ,∆θ].

Let c(x) ∈ C = 〈g(x)〉 and let c(x) = `(x)g(x) for some `(x) ∈ R[x; θ,∆θ].

If deg(`(x)) ≤ n − k − 1, then c(x) ∈ 〈g(x), xg(x), . . . , xn−k−1g(x)〉. If

deg(`(x)) > n − k − 1, by using the right-division algorithm we come up

with the conclusion that c(x) = `(x)g(x) = r(x)g(x) (in Rn,∆θ
) for some

polynomial r(x) ∈ R[x; θ,∆θ] with r(x) = 0 or deg(r(x)) < deg(h(x)) =

n − k, so {g(x), xg(x), . . . , xn−k−1g(x)} generates C. Moreover, it is easy

to see that the set is also linearly independent. Hence, we conclude that

{g(x), xg(x), . . . , xn−k−1g(x)} is a basis for C.

Since 〈g(x)〉 is a submodule of Rn,∆θ
over R[x; θ,∆θ], by Lemma 7, C is a ∆θ-cyclic

code. The Lemma 9 above says that if C = 〈g(x)〉 is a ∆θ-cyclic code, where g(x) is

a nonzero polynomial in C of smallest degree with a unit leading coefficient and g(x)

is also a right divisor of xn − 1, then C is free. Hence, we obtained a construction

method for ∆θ-cyclic codes as described by the following.

Corollary 3. If g(x) is a right divisor of xn − 1, with leading coefficient a unit, then
C = 〈g(x)〉 is a free ∆θ-cyclic code.

Let C = 〈g(x)〉 be a free ∆θ-cyclic code of length n generated by a right divisor g(x)
of xn − 1, whose leading coefficient is a unit. Then the generator matrix G of C of
dimension (n− k)× n is given by

G =


g(x)
xg(x)

x2g(x)
...

xn−k−1g(x)

 ,

where g(x) = g0 + g1x+ g2x
2 + · · ·+ gkx

k. To be more precise, if n− k is odd, then

G =


g0 g1 g2 ··· gk 0 ··· 0

∆θ(g0) θ(g0)+∆θ(g1) θ(g1)+∆θ(g2) ··· θ(gk−1)+∆θ(gk) θ(gk) ··· 0
0 0 g0 ··· gk−3 gk−2 ··· 0

...
...

... ···
...

...
0 0 ··· g0 gk−2 ··· gk−1 gk

 ,
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and if n− k is even, then

G =


g0 g1 g2 ··· gk 0 ··· 0 0

∆θ(g0) θ(g0)+∆θ(g1) θ(g1)+∆θ(g2) ··· θ(gk−1)+∆θ(gk) θ(gk) ··· 0 0
0 0 g0 ··· gk−3 gk−2 ··· 0 0

...
...

... ···
...

...
...

...
...

0 0 ··· ∆θ(g0) θ(g0)+∆θ(g1) θ(g1)+∆θ(g2) ··· θ(gk−1)+∆θ(gk) θ(gk)

 .

4. Dual of ∆θ-cyclic codes over R

In this section, we investigate the structure of the dual of a free ∆θ-cyclic code over

R with even length.

Definition 5. Let C ⊆ Rn is a ∆θ-cyclic code. Dual of C, denoted by C⊥, is defined by

C⊥ = {x ∈ Rn : x · y = 0, for all y ∈ C}.

Here, x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1 denotes the usual inner product in Rn.

It is easy to check that C⊥ is a linear code over R. Moreover, for any even n, if C is

a free ∆θ-cyclic code principally generated by a polynomial whose leading coefficient

is a unit, then C⊥ is free, as we show below.

Lemma 10. Let n be an even integer. Let g(x), h(x) ∈ R[x; θ,∆θ], where the leading
coefficient of g(x) is a unit, and h(x)g(x) = xn − 1. Then we have

h(x)g(x) = g(x)h(x).

Proof. If n is even, then xn − 1 = h(x)g(x) is a central element (by Theorem 2).

Then we have

h(x)h(x)g(x) = h(x)g(x)h(x).

Since h(x) is not a zero divisor, xn − 1 = h(x)g(x) = g(x)h(x).

Lemma 11. Let C be a ∆θ-cyclic code, where C = 〈g(x)〉, for some right divisor g(x)
of xn − 1, whose leading coefficient is a unit and n is even. Let xn − 1 = h(x)g(x). Then
c(x) ∈ Rn,∆θ is contained in C if and only if c(x)h(x) = 0 (in Rn,∆θ ).

Proof. (=⇒) Since c(x) ∈ C, there exists a(x) ∈ R[x; θ,∆θ] such that c(x) =

a(x)g(x). Hence,

c(x)h(x) = a(x)g(x)h(x) = a(x)h(x)g(x) = a(x)(xn − 1) = 0 (in Rn,∆θ
).
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(⇐=) Since c(x)h(x) = 0 (in Rn,∆θ
) for some c(x) ∈ Rn,∆θ

, we have c(x)h(x) =

q(x)(xn − 1) for some q(x) ∈ R[x; θ,∆θ]. In this case

c(x)h(x) = q(x)(xn − 1) = q(x)h(x)g(x) = q(x)g(x)h(x).

Since h(x) is not a zero divisor, we have c(x) = q(x)g(x) ∈ 〈g(x)〉 = C.

We also have known that all unit in R are {1, 3, 1+2v, 3+2v}. It is easy to check that

for all units a in R, we have θ(a)′s are also units in R. Hence, we have the following.

Lemma 12. If a ∈ R is a unit, then θ(a) ∈ R is also a unit.

Now, consider a ∆θ-cyclic code C of even length n. Let C = 〈g(x)〉, where g(x)

is a right divisor of xn − 1 and its leading coefficient is a unit. Then there exists

h(x) = h0 + h1x + · · · + hkx
k ∈ Rn,∆θ

such that xn − 1 = h(x)g(x). For c(x) =

c0 + c1x + · · · + cn−1x
n−1 ∈ C, by Lemma 11, we have c(x)h(x) = 0 (in Rn,∆θ

). By

considering the coefficients of xk, xk+1, . . . , xn−1 in the last equation, we obtain two

systems of equations each consisting of n − k linear equations in c0, c1, . . . , cn−1. To

be more precise, we have the following two systems of equations, for k is odd and

even, respectively.

{
cihk + ci+1(θ(hk−1) + ∆θ(hk)) + ci+2hk−2 + · · ·+ ck+i(θ(h0) + ∆θ(h1)) = 0, if i is even,

ciθ(hk) + ci+1hk−1 + ci+2(θ(hk−2) + ∆θ(hk−1)) + · · ·+ ck+ih0 + ck+i+1∆θ(h0) = 0, if i is odd.

{
cihk + ci+1(θ(hk−1) + ∆θ(hk)) + ci+2hk−2 + · · ·+ ck+ih0 + ck+i+1∆θ(h0) = 0, if i is even,

ciθ(hk) + ci+1hk−1 + ci+2(θ(hk−2) + ∆θ(hk−1)) + · · ·+ ck+i(θ(h0) + ∆θ(h1)) = 0, if i is odd,

If we write the system of equations in a matrix form, we obtain HcT = 0, for the

matrix H of dimension (n− k)× n. It implies that GHT = 0, for a generator matrix

G of C. Moreover, it is easy to check that H is of the row echelon form with diagonal

elements hk or θ(hk), and having a submatrix of dimension (n−k)× (n−k). Since hk
is a unit, by Lemma 12, we have θ(hk) is also a unit. Then the rows of H are linearly

independent. Hence, |Row space of H| = |R|n−k = |C⊥|. Thus, H is a parity check

matrix of C and we have proven the following theorem.

Theorem 3. Let C be a ∆θ-cyclic code of even length n, where C = 〈g(x)〉, for some
right divisor g(x) of xn − 1, whose leading coefficient is a unit and xn − 1 = h(x)g(x), for
some h(x) = h0 +h1x+h2x

2 + · · ·+hkx
k ∈ Rn,∆θ . Then the (n−k)×n parity-check matrix

H for C is given by



hk θ(hk−1)+∆θ(hk) hk−2 ··· ··· ··· θ(h0)+∆θ(h1) ··· ··· ··· 0 0

0 θ(hk) hk−1 θ(hk−2) ··· ··· ··· ∆θ(h0) ··· ··· 0 0

0 0 hk θ(hk−1)+∆θ(hk) hk−2 ··· ··· ··· θ(h0)+∆θ(h1) ··· 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
0 0 ··· ··· 0 hk θ(hk−1)+∆θ(hk) hk−2 ··· ··· h1 θ(h0)+∆θ(h1)
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for an odd k, and


hk θ(hk−1)+∆θ(hk) hk−2 ··· ··· ··· h0 ∆θ(h0) 0 ··· 0 0

0 θ(hk) hk−1 θ(hk−2) ··· ··· h1 θ(h0)+∆θ(h1) 0 ··· 0 0

0 0 hk θ(hk−1)+∆θ(hk) hk−2 ··· h2 θ(h1)+∆θ(h2) ··· ··· 0 0

...
...

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 0 ··· ··· 0 θ(hk) hk−1 ··· ··· ··· h1 θ(h0)+∆θ(h1)



for an even k.

5. New linear codes over Z4

In this section, we obtained many linear codes over Z4 with new parameters from the

Gray image, residue code, and torsion code of skew-linear and skew-cyclic codes with

derivation over R. First, we construct linear codes over Z4 from principally generated

free ∆θ-cyclic codes over R in Corollary 3. The linear codes over Z4, some of them

are with new parameters, are listed in the table below.

C
Φ(C) Res(C) Tor(C) CPS

[n, 4k12k2 , dL] [n, 4k12k2 , dL] [n, 4k12k2 , dL] [n, 4k12k2 , dL]

〈3 + x〉 [8, 4620, 2]∗) [4, 4320, 2]∗) [4, 4320, 2]∗) [8, 4620, 2]∗)

〈(3 + 2v) + (3 + 2v)x+ 2x2

+(1 + 2v)x3 + (3 + 2v)x4〉
[6, 4220, 6]∗)

〈3v + (3 + v)x+ (3 + v)x2 + (1+

2v)x3 + (2 + 2v)x4 + 2x5 + vx6+

(1 + 3v)x7 + (1 + v)x8 + x9〉
[12, 4320, 10]∗)

〈(1 + 3v) + 3x+ x2 + (3 + 2v)x4

+2x5 + 2vx6 + 2x7 + (1 + 3v)x8

+3x9 + 3x10 + x12〉
[16, 4420, 12]∗∗

Table 1: Free linear codes over Z4

Notes for Table 1, Table 2, Example 1, and Example 2:

• ∗ means that the code has new k1 and k2, but there is/are other codes of equal

length in the database [2] with the same minimum Lee distance but with greater

cardinalities.

• ∗∗ means that the code has minimum Lee distance greater than all existing

linear codes of equal length with the same values of k1 and k2 in the database

[2].

• ∗∗∗ means that the code has new k1 and k2, with greater or equal cardinalities

compared with all existing linear codes of equal length with the same value of

minimum Lee distance in the database [2].

• ∗) means that the code has the same parameters as some existing good linear

codes of equal length in the database [2].
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• CPS is the code obtained by Plotkin-sum construction, namely CPS := {(x | x+

y) : x,y ∈ Res(C)} or CPS := {(x | x + y) : x,y ∈ Tor(C)}.

In the Table 1 above, notice that all linear codes over Z4 constructed by this method

are free. This is not a coincidence. In fact, this is a direct consequence of Theorem

1, as follows.

Corollary 4. Let C be a free ∆θ-cyclic code of length n over R with |C| = 16k. Then
the free linear codes Res(C) and Tor(C) have parameter 4k20, and the free linear code Φ(C)
has parameter 42k20.

Remark 2. The part of Corollary 4 related to the parameters of Res(C) and Tor(C) does
not hold for linear codes over Z4 + uZ4, with u2 = 1 considered by Sharma and Bhaintwal
[22] (e.g., see Example 7 in [22]).

5.1. Notes on a computational simplification

From Corollary 4, we conclude that we need non-free linear codes over R to obtain

non-free Gray images, residue codes, and torsion codes. Here, we use a slightly

modified construction from principally generated ∆θ-cyclic codes. Notice that for

any g(x) ∈ Rn,∆θ
, the set {g(x), xg(x), . . . , xn−1g(x)} is a generating set, which is

not necessary minimal, of the (not necessarily free) ∆θ-cyclic code C = 〈g(x)〉 over

R. We consider the subcode Ck = 〈g(x), xg(x), . . . , xk−1g(x)〉 of C for some k ≤ n.

From there, we can obtain Res(Ck), T or(Ck), and Φ(Ck). For the case of ∆θ-cyclic

codes over R, we can simplify our computation as follows.

Let C be a ∆θ-cyclic code over R of length n generated by {g(x), xg(x), . . . , xn−1g(x)},
where g(x) = c0 + c1x + c2x

2 + · · · + cn−1x
n−1 ∈ Rn,∆θ

and ci = ai + biv, for

0 ≤ i ≤ n−1. To be more precise, for an even and an odd n, the generator of C ⊆ Rn
consists of the following vectors, respectively:

g1 = (a0 + b0v, a1 + b1v, . . . , an−2 + bn−2v, an−1 + bn−1v),

g2 = (an−1 + bn−1 + b0 − bn−1v, a0 + b0 + b1 − b0v, . . . , an−3 + bn−3 + bn−2 − bn−3v,

an−2 + bn−2 + bn−1 − bn−2v),

g3 = (an−2 + bn−2v, an−1 + bn−1v, . . . , an−4 + bn−4v, an−3 + bn−3v),

...

gn = (a1 + b1 + b2 − b1v, a2 + b2 + b3 − b2v, . . . , an−1 + bn−1 + b0 − bn−1v,

a0 + b0 + b1 − b0v),

and

g1 = (a0 + b0v, a1 + b1v, . . . , an−2 + bn−2v, an−1 + bn−1v),

g2 = (an−1 + bn−1 + b0 − bn−1v, a0 + b0 + b1 − b0v, . . . , an−3 + bn−3 + bn−2 − bn−3v,

an−2 + bn−2 + bn−1 − bn−2v),

g3 = (an−2 + bn−2v, an−1 + bn−1v, . . . , an−4 + bn−4v, an−3 + bn−3v),

...

gn = (a1 + b1v, a2 + b2v, . . . , an−1 + bn−1v, a0 + b0v).
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By applying the Lemma 1, we obtain the generator of Res(C) for an even and an

odd n that consists of the following vectors, respectively:

Res(g1) = (a0, a1, a2, . . . , an−2, an−1),

Res(g2) = (an−1 + bn−1 + b0, a0 + b0 + b1, . . . , an−3 + bn−3 + bn−2, an−2 + bn−2 + bn−1),

Res(g3) = (an−2, an−1, . . . , an−4, an−3),

..

.

Res(gn) = (a1 + b1 + b2, a2 + b2 + b3, . . . , an−1 + bn−1 + b0, a0 + b0 + b1),

and

Res(g1) = (a0, a1, a2, . . . , an−2, an−1),

Res(g2) = (an−1 + bn−1 + b0, a0 + b0 + b1, . . . , an−3 + bn−3 + bn−2, an−2 + bn−2 + bn−1),

Res(g3) = (an−2, an−1, . . . , an−4, an−3),

...

Res(gn) = (a1, a2, . . . , an−1, a0).

Moreover, we obtain the generator of Tor(C) for an even and an odd n that consists

of the following vectors, respectively:

Tor(g1) = (a0 + b0, a1 + b1, a2 + b2, . . . , an−2 + bn−2, an−1 + bn−1),

T or(g2) = (an−1 + b0, a0 + b1, . . . , an−3 + bn−2, an−2 + bn−1),

T or(g3) = (an−2 + bn−2, an−1 + bn−1, . . . , an−4 + bn−4, an−3 + bn−3),

...

Tor(gn) = (a1 + b2, a2 + b3, . . . , an−1 + b0, a0 + b1),

and
Tor(g1) = (a0 + b0, a1 + b1, a2 + b2, . . . , an−2 + bn−2, an−1 + bn−1),

T or(g2) = (an−1 + b0, a0 + b1, . . . , an−3 + bn−2, an−2 + bn−1),

T or(g3) = (an−2 + bn−2, an−1 + bn−1, . . . , an−4 + bn−4, an−3 + bn−3),

...

Tor(gn) = (a1 + b1, a2 + b2, . . . , an−1 + bn−1, a0 + b0).

For any k ≤ n, if Ck is generated by the set {g1, g2, . . . , gk}, then

the Res(Ck) and Tor(Ck) is generated by {Res(g1), Res(g2), . . . , Res(gk)} and

{Tor(g1), T or(g2), . . . , T or(gk)}, respectively. This method can reduce the compu-

tation time significantly. Using this method, we can obtain some linear codes over Z4

with good parameters, as listed in the table below.
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Generators of C
Res(C) Tor(C) CPS

[n, 4k12k2 , dL] [n, 4k12k2 , dL] [n, 4k12k2 , dL]

{g1(x), xg1(x)} [4, 4121, 4]∗ [8, 4222, 4]

{g2(x), xg2(x), x2g2(x)} [4, 4122, 2] [8, 4224, 2]∗

{g3(x), xg3(x), x2g3(x)} [5, 4221, 4]∗∗∗

{g4(x), xg4(x), x2g4(x)} [6, 4221, 4]∗

{g5(x), xg5(x), x2g5(x), x3g5(x), x4g5(x)} [6, 4223, 4]∗) [12, 4426, 4]∗

{g6(x), xg6(x), x2g6(x), x3g6(x)} [6, 4321, 4]∗ [12, 4622, 4]∗

{g7(x), xg7(x), x2g7(x), x3g7(x),

x4g7(x), x5g7(x), x6g7(x)}
[8, 4423, 4]∗) [16, 4826, 4]

{g8(x), xg8(x), x2g8(x), x3g8(x),

x4g8(x), x5g8(x)}
[8, 4521, 4]∗∗∗ [16, 41022, 4]∗

{g9(x), xg9(x), x2g9(x)} [9, 4320, 7]∗)

{g10(x), xg10(x), x2g10(x)} [10, 4320, 8]∗)

{g11(x), xg11(x)} [15, 4220, 15]

{g12(x), xg12(x), x2g12(x)} [18, 4320, 14]

Table 2: Linear codes over Z4

In Table 2,

• g1(x) = (1 + 3v) + 2x+ (3 + 3v)x2.

• g2(x) = (1 + v) + (2 + 2v)x+ (1 + 3v)x2.

• g3(x) = (1 + 3v) + 2vx+ (2 + 2v)x2 + 2vx3 + (1 + 3v)x4.

• g4(x) = 3 + (1 + 3v)x+ (3 + v)x2 + (2 + 3v)x3.

• g5(x) = (3 + 3v) + (1 + 3v)x+ (3 + 3v)x3 + (3 + v)x4 + 2x5.

• g6(x) = (1 + v) + x+ (2 + v)x2 + vx3 + 3vx5.

• g7(x) = (1 + v) + 3x+ (2 + 3v)x2 + (3 + v)x3 + (2 + 2v)x4 + 2x6 + x7.

• g8(x) = 2v + (2 + 3v)x+ (1 + 3v)x2 + (1 + 2v)x3 + 2vx4 + (1 + v)x5 + x6 + 3vx7.

• g9(x) = (1 + v) + (1 + 3v)x+ (3 + 2v)x2 + 3x3 + (3 + 3v)x4 + (2 + 2v)x5 + (2 + 3v)x6 + (3 +
3v)x7 + (1 + 3v)x8.

• g10(x) = (1 + 3v) + (2 + 2v)x+ 3x2 + vx4 + 3x5 + (3 + 3v)x6 + x7 + x8.

• g11(x) = (1 + v) + (2 + v)x2 + (3 + 2v)x3 + (3 + v)x5 + (1 + 2v)x6 + 2x7 + (3 + v)x8 + 3x9 +
2vx10 + (3 + 2v)x11 + (1 + 2v)x12 + (2 + v)x13 + (1 + 3v)x14.

• g12(x) = 1 + 2vx+ (3 + 2v)x2 + (2 + 2v)x3 + (1 + 2v)x4 + x5 + vx6 + x7 + (1 + 2v)x8 + (3 +

2v)x9 + (1 + 3v)x10 + (3 + 3v)x11 + (2 + v)x12 + (3 + 3v)x13 + x14 + (2 + v)x15 + (2 + 2v)x16.

Exactly the same method can also be used for Φ(Ck). This observation brings us to

the conclusion that the codes Res(Ck), T or(Ck), and Φ(Ck) have at most 4k, 4k, and

42k codewords, respectively. Moreover, the similar observation can also be applied to

the codes over Z4 +uZ4, with u2 = 1, investigated by Sharma and Bhaintwal [22] and

it is easy to verify that in this case, the codes Res(Ck), T or(Ck), and Φ(Ck) have at

most 42k codewords.
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5.2. Construction from another method

By applying the construction in [23], we can obtain even more new linear codes over

Z4 with the highest known minimum Lee distance, previously unknown to exist in the

database [2]. As illustrations, we provide several examples below. In the following

examples, the code Ci refers to the code generated by the polynomial gi(x) in Table

2.

Example 1. In these examples, we use Lemma 4.6 in [23] to construct new linear codes
over Z4.

• From the code with parameters [6, 4220, 6] in Table 1, we obtained linear codes
with parameters [12, 4221, 12]∗), [24, 4320, 24]∗), [24, 4222, 24]∗), [48, 4321, 48]∗∗∗, and
[48, 4223, 48]∗).

• From the code with parameters [12, 4320, 10] in Table 1, we obtained linear codes with
parameters [24, 4321, 20], [48, 4420, 40], and [48, 4322, 40]∗∗∗.

• From the code C3 with parameters [5, 4221, 4] we obtained linear codes with parameters
[10, 4222, 8]∗∗∗, [20, 4321, 16], [20, 4223, 16]∗, [40, 4322, 32]∗, and [40, 4224, 32].

• From the code C5 with parameters [6, 4223, 4] we obtained a linear code with para-
meters [12, 4224, 8]∗∗.

• From the code C6 with parameters [6, 4321, 4] we obtained a linear code with para-
meters [12, 4322, 8]∗.

• From the code C9 with parameters [9, 4320, 7] we obtained linear codes with parameters
[18, 4321, 14]∗∗, [36, 4420, 28]∗∗, and [36, 4322, 28]∗∗.

• From the code C10 with parameters [10, 4320, 8] we obtained a linear code with para-
meters [40, 4420, 32].

Example 2. In these examples, we use Lemma 4.3 in [23] to construct new linear codes
over Z4.

• From the code with parameters [12, 4320, 10] in Table 1 and the code with parameters
[24, 4320, 24], respectively, we obtained a linear code with parameters [36, 4320, 34]∗).

• From the code C3 with parameters [5, 4221, 4] and the code with parameters
[12, 4221, 12] we obtained a linear code with parameters [17, 4221, 16]∗.

• From the code C6 with parameters [6, 4321, 4] and the code with parameters
[20, 4321, 16] we obtained a linear code with parameters [26, 4321, 20]∗.

6. Concluding remarks

We have investigated the algebraic structures of skew-cyclic codes, also known as

θ-cyclic codes, with a derivation ∆θ over the ring R = Z4 + vZ4, with v2 = v,

extending the observation of Boucher and Ulmer [9], where they defined and
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considered the skew-cyclic codes with derivation over a finite field. To our best

knowledge, this is the third attempt after the paper by Sharma and Bhaintwal [22]

and Patel and Prakash [20]. As a consequence, we constructed several new codes

over Z4 unknown to exist before due to the database [2], with good parameters. All

computations to find the codes were done by Python and Magma computational

algebra system [5]. Regarding the derivation, it is easy to show that the map

∆θ(x) = (3 + 2v)(θ(x)− x) also defines a derivation on R. All properties which hold

for the derivation ∆θ(x) = (1+2v)(θ(x)−x) in this paper also hold for the derivation

∆θ(x) = (3 + 2v)(θ(x) − x). The method explained in Section 5 can be modified for

the case of derivation ∆θ(x) = (3 + 2v)(θ(x) − x). There is some hope to obtain

many more examples of linear codes over Z4 with better parameters. As an example,

Tor(C) of the code C := 〈g(x), xg(x), x2g(x)〉, with g(x) = 3v+(2+v)x+3vx2 +vx3,

has parameters [4, 4122, 4], which is better than the one in Table 1.
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