Polycyclic codes over R

Document Type : Original paper

Author

Presidency University, Bangalore, Karnatakka-560064, India

Abstract

In this paper, we  discuss the structure of polycyclic codes over the ring $R=\mathbb{F}_q+u\mathbb{F}_q+v\mathbb{F}_q;u^2=\alpha u,v^2=v$ and $uv=vu=0$, where $\alpha$ is an unit element in $R.$ We introduce annihilator self-dual codes, annihilator self-orthogonal codes and annihilator LCD codes over R. Using a Gray map, we define a one to one correspondence between $R$ and $\mathbb{F}_q$ and  construct quasi polycyclic  codes over the  $\mathbb{F}_q$.

Keywords

Main Subjects


[1] A. Alahmadi, S.T. Dougherty, A. Leroy, and P. Solé, On the duality and the direction of polycyclic codes, Adv. Math. Commun. 10 (2016), no. 4, 921–929.  https://doi.org/10.3934/amc.2016049
[2] A. Fotue-Tabue, E. MartÍnez-Moro, and J.T. Blackford, On polycyclic codes over a finite chain ring., Adv. Math. Commun. 14 (2020), no. 3, 455–466.  https://doi.org/10.3934/amc.2020028
[3] S.R. López-Permouth, B.R. Parra-Avila, and S. Szabo, Dual generalizations of the concept of cyclicity of codes., Adv. Math. Commun. 3 (2009), no. 3, 227–234.  https://doi.org/10.3934/amc.2009.3.227
[4] W. Qi, On the polycyclic codes over $\mathbb F_q + u\mathbb F_q$, Adv. Math. Commun. 18 (2024), no. 3, 661–673.  https://doi.org/10.3934/amc.2022015