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Abstract: In this paper, we discuss the structure of polycyclic codes over the ring
R = Fq + uFq + vFq ;u2 = αu, v2 = v and uv = vu = 0, where α is an unit element

in R. We introduce annihilator self-dual codes, annihilator self-orthogonal codes and

annihilator LCD codes over R. Using a Gray map, we define a one to one correspondence
between R and Fq and construct quasi polycyclic codes over the Fq .
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1. Introduction

An interesting subtype of linear codes are polycyclic codes of length n over a finite field

Fq with q elements which are described by ideals of a polynomial rings Fq[x]/〈f(x)〉.
In 2009, López-Permouth et al. [3] studied polycyclic codes and sequential codes,

and showed that a linear code is polycyclic if and only if its Euclidean dual code is

sequential which is not always polycyclic. In 2016, Alahmadi et al. [1] introduced

the annihilator dual codes over Fq and showed that the annihilator dual codes of

polycyclic codes over Fq are also polycyclic. In 2022, Wei Qi study the polycyclic

codes over Fq+uFq with u2 = u and have constructed the annihilator self-dual codes,

annihilator self-orthogonal codes and annihilator LCD codes. This motivated us to

do the following works.

In this paper, we study Polycyclic codes and Sequential codes over the ring R =

Fq + uFq + vFq;u2 = αu, v2 = v and uv = vu = 0. We have introduced annihilator

self-dual codes, annihilator self-orthogonal codes and annihilator LCD codes over R.

Using a Gray map, we have defined a one to one correspondance between {1, R and

F3
q} and a few codes are constructed.
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2. Preliminaries

Let Fq be a finite field of order q with characteristic p, then we define a ring R =

Fq + uFq + vFq with u2 = αu, v2 = v, uv = vu = 0 where α is an unit element in R.

The ring R is a semi-local and Frobenious ring. A linear code C is a R-module. C⊥

is the Eucleadean dual of C. Let e1 = u
α , e2 = v and e3 = (1− u

α − v). Then, we have

e2i = ei, eiej = 0 and
∑3
i=1 ei = 1 where i = 1, 2, 3 and i 6= j. By using decomposition

theorem of rings, we have R =
⊕3

i=1 eiR
∼=

⊕3
i=1 eiFq. Therefore, any element in R

can be uniquely expressed as r =
∑3
i=1 eiri where ri ∈ Fq.

Let C be a linear code of length n over R and Ci = {ri ∈ Fnq |
∑3
i=1 eiri ∈ C} for

some rj ∈ Fnq where j 6= i. Then Ci is a linear code of length n over Fq for 1 ≤ i ≤ 3.

Hence, C can be expressed as C =
⊕3

i=1 eiCi.

Definition 1. Let C be a linear code over R and let a = (a0, a1, . . . , an−1) ∈ Rn with the
condition that a0 as a unit element of R

• then C is a-polycyclic code if it satisfies the right polycyclic shift operator given by

σa(c0, c1, . . . , cn−1) = (0, c1, c2, . . . , cn−2) + cn−1(a0, a1, . . . , an−1)

• then C is a-sequential code if it satisfies the right sequential shift operator given by

τa(c0, c1, . . . , cn−1) = (c1, c2, . . . , cn−1, c0a0 + c1a1 + · · ·+ cn−1an−1).

Hereafter, we denote R[x]/〈xn − a(x)〉 as Ra. Then the map φ : Rn −→ Ra defined
by

(c0, c1, c2, . . . , cn−1) 7→ c(x) = c0 + c1x+ · · ·+ cn−1x
n−1,

is a module isomorphism and we have the following result.

Theorem 1. Let C be a polycyclic code over the ring R, then the corresponding image
sets φ is an R[x]-module over Ra.

Definition 2 ([4]). Let C be a polycyclic code of length n.

1. Let α(x), β(x) ∈ Ra, then the annihilator product of α(x) and β(x) is defined as

〈α(x), β(x)〉a = r(0)

where α(x)β(x) ≡ r(x)( mod xn − a(x)) and deg(r(x)) ≤ n− 1.

2. The annihilator dual code C′ of an a-polycyclic code C is defined to be

C′ = {β(x) ∈ Ra | 〈α(x), β(x)〉a = r(0) = 0 for all α(x) ∈ C}.
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3. The a-polycyclic code C is said to be an annihilator self-orthogonal code (resp.,
annihilator self-dual code, annihilator LCD code) provided that C ⊆ C′ (resp.,
C = C′, C ∩ C′ = {0}).

4. The annihilator of C is

Ann(C) = {β(x) ∈ Ra | α(x)β(x) = 0 ∈ Ra for all α(x) ∈ C}.

Theorem 2. [[4]] Let C be an a-polycyclic code of length n over Fq. Let g(x) be the
generator polynomial and h(x) the check polynomial of C, then C′ = 〈h(x)〉.

Lemma 1 ([1]). Let a = (a0, a1, · · · , an−1) ∈ Fn
q with a0 6= 0, C be an a-polycyclic code

of length n over Fq, then α(x)β(x) is non-degenerate, and thus C′ = Ann(C).

Lemma 2 ([1]). Let C1 and C2 be a-polycyclic codes over Fq, g1, g2 their generator
polynomials, respectively, then C1 ⊆ C2 if and only if g2|g1.

Lemma 3 ([1]). Let C be an a-polycyclic code over Fq, then C is an annihilator self-
orthogonal code if and only if h(x)|g(x) where g(x) and h(x) are the generator polynomial
and check polynomial of C, respectively.

Lemma 4 ([1]). Let C be an a-polycyclic code over Fq, then C is an annihilator LCD
code if and only if gcd(g(x), h(x)) = 1 where g(x) and h(x) are the generator polynomial and
check polynomial of C, respectively.

3. Codes over the ring R

A unique representation of an element in R is defined as r = r1e1 + r2e2 + r3e3. Each
coordinate aj in a = (a0, a1, . . . , an−1) can be written as aj = a1je1 +a2je2 +a3je3, 1 ≤
j ≤ n− 1 in a unique way and cj in c = (c0, c1, . . . , cn−1) ∈ C as cj = c1je1 + c2je2 +

c3je3, 1 ≤ j ≤ n− 1. On applying the polycyclic operator,

σa(c) = (0, c1, c2, . . . , cn−2) + cn−1(a0, a1, . . . , an−1)

= (0, c11e1 + c21e2 + c31e3, c
1
2e1 + c22e2 + c32e3, . . . , c

1
n−2e1 + c2n−2e2 + c3n−2e3)

+(c1n−1e1 + c2n−1e2 + c3n−1e3)(a10e1 + a20e2 + a30e3, a
1
1e1 + a21e2 + a31e3, · · · ,

a1n−1e1 + a2n−1e2 + a3n−1e3)

= (0, c11e1, e1c
1
2, . . . , e1c

1
n−2) + e1c

1
n−1(a10e1, a

1
1e1, . . . , a

1
n−1e1)

+(0, c21e2, e2c
2
2, . . . , e2c

2
n−2) + e2c

2
n−1(a20e2, a

2
1e2, . . . , a

2
n−1e2)

+(0, c31e3, e3c
3
2, . . . , e3c

3
n−2) + e3c

3
n−1(a30e3, a

3
1e3, . . . , a

3
n−1e3)

= e1((0, c11, c
1
2, . . . , c

1
n−2) + c1n−1(a10, a

1
1, . . . , a

1
n−1))

+e2((0, c21, c
2
2, . . . , c

2
n−2) + c2n−1(a20, a

2
1, . . . , a

2
n−1))

+e3((0, c31, c
3
2, . . . , c

3
n−2) + c3n−1(a30, a

3
1, . . . , a

3
n−1))

= e1(σa1 (c1)) + e2(σa2 (c2)) + e3(σa3 (c3)).

Thus, σa1(c1) ∈ C1, σa2(c2) ∈ C2 and σa3(c3) ∈ C3 and vice versa. Thus, we have

the following Theorem.
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Theorem 3. Let C be a linear code over R of length n, then C is an a-polycyclic code of
length n if and only if every Ci is an ai-polycyclic codes over Fq (1 ≤ i ≤ 3).

Theorem 4. Let C be a linear code of length n over R, then C is a-sequential over R if
and only if every Ci is ai-sequential over Fq.

Proof. Proof is similar to that of Theorem 3.

Lemma 5. Let C be an a-polycyclic code of length n over Fq, then C is a principal ideal
〈g(x)〉 of Fq[x]/〈xn − a(x)〉 generated by some monic polynomial and a divisor of xn − a(x).
In this case, g(x) is said to be a generator polynomial of C.

Theorem 5. Let C =
⊕3

i=1 eiCi be a a-polycyclic code of length n over R, then C =
〈g(x) = e1g1(x) + e2g2(x) + e3g3(x)〉 of R[x]/〈xn − a(x)〉 where gi(x) = 〈Ci〉, gi(x)|xn −
ai(x), 1 ≤ i ≤ 3 over Fq.

Proof. Let C =
⊕3

i=1 eiCi be an a-polycyclic code over R. Let c(x) ∈ C =⊕3
i=1 eiCi, then there exists pi(x) ∈ Fq[x]/〈xn − ai(x)〉 such that

3∑
i=1

eipi(x)gi(x) = c(x)

(
3∑

i=1

eipi(x)

)(
3∑

i=1

eigi(x)

)
= c(x)

Then c(x) ∈ 〈g(x)〉, 〈g(x)〉 ⊆
⊕3

i=1 eiCi.

Let C =
⊕3

i=1 eiCi be a a-polycyclic code over R, then by Theorem 3, Ci is ai-
polycyclic code of length n over Fq. So by Lemma 5, we have gi(x) = 〈Ci〉 and
gi(x)|xn − ai(x). Then there exists hi(x) ∈ R[x]/〈xn − ai(x)〉 such that gi(x)hi(x) =
xn − ai(x). Therefore eigi(x)hi(x) = ei(x

n − ai(x)) and hence

3∑
i=1

eigi(x)hi(x) = xn − a(x)

(
3∑

i=1

eigi(x)

)(
3∑

i=1

eihi(x)

)
= xn − a(x).

Thus, we have C = 〈
3∑
i=1

eigi(x)hi(x)〉.

Theorem 6 ([2]). If f(0) 6= 0, then the bilinear form 〈., .〉 is non degenerate.

Theorem 7. Let α(x), β(x) ∈ Ra. Then 〈α(x), β(x)〉 is a non-degenerate symmetric
R-bilinear form.
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Proof. For any α, β, γ ∈ Rn, k ∈ R, 〈k(α+ β), γ〉 = r(0),

where [k(α+ β)γ](x) ≡ r(x)( mod xn − a(x))

k[α(x)γ(x)] + k[β(x)γ(x)] ≡ r(x)( mod xn − a(x))

on the other hand,

〈kα(x), γ(x)〉 = r1(0) where k[α(x)γ(x)] ≡ r1(0) mod xn − a(x),

〈kβ(x), γ(x)〉 = r1(x) where k[β(x)γ(x)] ≡ r2(x) mod xn − a(x),

using the property compatibility with addition, we have r(x) = r1(x) + r2(x). Thus,

〈k(α + β), γ〉 = k〈α, γ〉 + k〈β, γ〉 is bilinear. Since the ring R is commutative, we

have 〈β, γ〉 = 〈γ, β〉. To show 〈., .〉 is non-degenerate, it is enough to show that the

Radicals of R is {0}. Suppose not, that is, there exists β 6= 0 ∈ R(Rn) such that

〈α, β〉 = 0 for all α ∈ R. Since α, β ∈ Rn, it can be uniquely represented by α =

e1α1 +e2α2 +e3α3, α = e1β1 +e2β2 +e3β3. Therefore, by using the bilinear property,

one can write 〈α, β〉 = 0 as

〈α, β〉 =

3∑
i=1

ei〈αi, βi〉 = 0,

which contradicts 6. Thus, 〈., .〉a is a non-degenrate symmetric R-bilinear form.

Theorem 8. Let C be an a-polycyclic code over S and let ε1 = (1, 0, · · · , 0), ε2 =
(0, 1, · · · , 0), · · · , εn = (0, 0, · · · , 1) and A = (〈εi, εj〉a)1 ≤ i, j ≤ n. Let CA = {cA | c ∈ C}.
Then C′ = (CA)⊥. Consequently, (C′)′ = C.

Proof. Note that 〈u, v〉a = uAvt = 〈u,Av〉a. Thus C ′ = (CA)⊥. Using the equality,

C ′ = (CA)⊥. Since A is invertible, it follows that (C ′)′ = (C ′A)⊥ = (C ′)⊥A−1 =

((CA)⊥)⊥A−1 = C.

Theorem 9. Let C be a polycyclic code of length n. Then C′ = e1C
′
1

⊕
e2C

′
2

⊕
e3C

′
3.

Proof. Since every element in d ∈ R can be represented as d = e1d1 + e2d2 + e3d3,
it can be written as a matrix A uniquely as A = e1Ae1 + e2Ae2 + e3Ae3 where every
Aei is a matrix over Fq. Consider

(C′) = (e1C1

⊕
e2C2

⊕
e3C3)⊥(e1Ae1 + e2Ae2 + e3Ae3 )−1

= (e1C1Ae1

⊕
e2C2Ae2

⊕
e3C3Ae3 )

= e1C
′
1

⊕
e2C

′
2

⊕
e3C

′
3

Thus, C′ = e1C′1
⊕
e2C′2

⊕
e3C′3.
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Theorem 10. Let C be a linear code over R. Then C is a-polycyclic if and only if C′ is
a-polycyclic.

Proof. Since C is a polycyclic code over R, by Theorem 3, every Ci is a polycyclic

codes over Fq. Then, by [[2], Proposition 3], we have C ′i as polycyclic code over Fq
and again by Theorem 3 it is obvious that C ′ is a polycyclic codes.

Theorem 11. Let C be a linear code of length n over R. Then C is an a-polycyclic code
over R if and only if C⊥ is an a-sequential code over R.

Proof. By Theorem 3 if C is an a-polycyclic codes then every Ci is a ai-polycyclic

code over Fq. By Theorem[3.2] in [3], every Ci is a ai-polycyclic code over Fq if and

only if every C⊥i is a ai- sequential code over Fq. Thus by from Theorem4 C⊥ is an

a-sequential code.

Theorem 12. Let C be an a-polycyclic code over R generated by g(x). Suppose h(x) is
a check polynomial of C. Then C′ is an a-polycyclic code generated by h(x).

Proof. It follows from the proof of Theorems 10 and 5.

4. Gray map

In this section, we define a Gray map from R to F3
q. We have shown that Gray map

enjoy certain properties. Let x = x1e1 +x2e2 +x3e3 ∈ R, then we define φ : R −→ F3
q

by

φ(x1e1 + x2e2 + x3e3) = (x1, x2, x3).

It can be easily extended to any length n. Define Φ : Rn 7→ F3n
q by

by Φ(c0, c1, . . . , cn−1) = (φ(c0), φ(c1), . . . , φ(cn−1)).

The Gray weight wG of c ∈ Rn is defined by wG(c) =
∑n−1
i=0 wG(ci) =∑n−1

i=0 wH(φ(ci)), where wH is the Hamming weight in Fq, and the distance between

two codewords c, d ∈ C is dG(c, d) = wG(c− d). The minimum Gray distance of C is

dG(C) = min{wG(c) | 0 6= c ∈ C}.

For any two elements c, d ∈ Rn, dG(c, d) = wG(c− d) = wH(Φ(c− d)) = wH(Φ(c)−
Φ(d)) = dH(Φ(c),Φ(d)). Hence, Φ is a linear distance preserving map from (Rn, dG)

to (F 3n
q , dH).
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Theorem 13. Let C =
⊕3

i=1 eiCi be a linear code with parameter [n, k, dG], then Φ(C)
is a linear code over F3n

q with the parameter [3n, k, dH ].

Definition 3. Let C be a linear code and let a = a1e1 +a2e2 +a3e3 ∈ R, then C is called
a-quasicyclic code of index 3 over Fq if it satisfies the shift operator given by

τ3(x0, x1, . . . xn−1, y0, y1, . . . yn−1, z0, z1, . . . zn−1) = ((0, x1, x2, . . . , xn−2) + xn−1(a10, a
1
1, . . . , a

1
n−1),

(0, y1, y2, . . . , yn−2) + yn−1(a20, a
2
1, . . . , a

2
n−1),

(0, z1, z2, . . . , zn−2) + zn−1(a30, a
3
1, . . . , a

3
n−1)).

Theorem 14. Let C be a linear code over R of length 3n. Then C is an a-polycyclic code
if and only if Φ(C) is a-quasi cyclic code over Fq, (τ3(Φ(c)) = Φ(σa(c))).

Proof. Let C be an a-polycyclic code of length n, then it satisfies the cyclic shift
operator for every c ∈ C,

σa(c) = (0, c1, c2, . . . , cn−2) + cn−1(a0, a1, . . . , an−1)

= (0, c11e1 + c21e2 + c31e3, c
1
2e1 + c22e2 + c32e3, . . . , c

1
n−2e1 + c2n−2e2 + c3n−2e3)

+(c1n−1e1 + c2n−1e2 + c3n−1e3)(a10e1 + a20e2 + a30e3, a
1
1e1 + a21e2 + a31e3, · · · ,

a1n−1e1 + a2n−1e2 + a3n−1e3)

= (0, c11e1, e1c
1
2, . . . , e1c

1
n−2) + e1c

1
n−1(a10e1, a

1
1e1, . . . , a

1
n−1e1)

+(0, c21e2, e2c
2
2, . . . , e2c

2
n−2) + e2c

2
n−1(a20e2, a

2
1e2, . . . , a

2
n−1e2)

+(0, c31e3, e3c
3
2, . . . , e3c

3
n−2) + e3c

3
n−1(a30e3, a

3
1e3, . . . , a

3
n−1e3)

= e1((0, c11, c
1
2, . . . , c

1
n−2) + c1n−1(a10, a

1
1, . . . , a

1
n−1))

+e2((0, c21, c
2
2, . . . , c

2
n−2) + c2n−1(a20, a

2
1, . . . , a

2
n−1))

+e3((0, c31, c
3
2, . . . , c

3
n−2) + c3n−1(a30, a

3
1, . . . , a

3
n−1))

Φ(σa(c)) = ((0, c11, c
1
2, . . . , c

1
n−2) + c1n−1(a10, a

1
1, . . . , a

1
n−1),

(0, c21, c
2
2, . . . , c

2
n−2) + c2n−1(a20, a

2
1, . . . , a

2
n−1),

(0, c31, c
3
2, . . . , c

3
n−2) + c3n−1(a30, a

3
1, . . . , a

3
n−1)).

Let c′ ∈ Φ(C), then there exists an c ∈ C such that Φ(c) = c′. Consider

Φ(c) = (c10, c
1
1, . . . , c

1
n−1, c

2
0, c

2
1, . . . , c

2
n−1, c

3
0, c

3
1, . . . , c

3
n−1)

τ3(Φ(c)) = ((0, c11, c
1
2, . . . , c

1
n−2) + c1n−1(a10, a

1
1, . . . , a

1
n−1),

(0, c21, c
2
2, . . . , c

2
n−2) + c2n−1(a20, a

2
1, . . . , a

2
n−1),

(0, c31, c
3
2, . . . , c

3
n−2) + c3n−1(a30, a

3
1, . . . , a

3
n−1))

Hence, τ3(Φ(c)) = Φ(σa(c)).

Definition 4. Let C be an a-quasi polycyclic code of length n over Fq.
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1. Let αai(x), βai(x) ∈ Fai
q , then the annihilator product is defined as

3∑
i=1

〈αai (x), βai (x)〉ai =

3∑
i=1

rai (0)

where αai(x), βai(x) ≡ rai(x)( mod xn − ai(x)) and deg(rai(x)) ≤ n− 1

2. The annihilator dual code C′ of an a-quasi polycyclic code C is defined to be

C′ = {(βa1 (x), βa2 (x), βa3 (x)) ∈ (Fa1
q ,Fa2

q ,Fa3
q ) |

3∑
i=1
〈αai (x), βai (x)〉ai =

3∑
i=1

rai (0) =

0 for all αai (x) ∈ Ci}

Theorem 15. Let C be a polycyclic code. If C′ is annihilator dual of C, then Φ(C′) is
annihilator dual for an a-quasi cyclic code Φ(C).

Proof. Let β(x) ∈ C ′, then for every α(x) ∈ C, 〈α(x), β(x)〉a = r(0) = 0. Since

α(x), β(x) is an element of Ra, α(x) =
3∑
i=1

eiαai(x), β(x) =
3∑
i=1

eiβai(x).

〈
3∑

i=1

eiαai (x),

3∑
i=1

eiβai (x)〉a =

3∑
i=1

ei〈αai (x), βai (x)〉a =

3∑
i=1

eirai (0) = 0

where αai(x), βai(x) ≡ rai(x)( mod xn − ai(x)) which shows that rai(0) = 0 for all
i. To show Φ(β(x)) = (βa1(x), βa2(x), βa3(x)) ∈ Φ(C ′), let αai(x) ∈ Ci then

3∑
i=1

〈αai (x), βai (x)〉ai =

3∑
i=1

rai (0) = 0.

Thus, Φ(β(x)) = (βa1(x), βa2(x), βa3(x)) ∈ Φ(C ′).

Theorem 16. Let C be an a-polycyclic code over R, then

• C is annihilator self-orthogonal if and only if both Ca1 , Ca2 and Ca3 are annihilator
self-orthogonal over Fq.

• C is annihilator self-dual if and only if both Ca1 , Ca2 and Ca3 are annihilator self-dual
over Fq.

• C is annihilator LCD if and only if Ca1 , Ca2 and Ca3 are annihilator LCD over Fq.

Proof. The proof of this similar to that of Theorem 15.

Example 1. Let a(x) = 4x3 + 1, then Ra = F5[x]
〈x6−a(x)〉 . Let C = 〈gai(x)〉 = 〈x2 + 4x+ 4〉,

then C′ = 〈hai(x)〉 = 〈(x2 + 3x + 4)2〉. Since (gai(x), hai(x)) = 1, there exists a LCD
annihilator code of parameter [18, 12, 2]5.
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Example 2. Let a(x) = −(x4 + x6 − 1), then Ra = F3[x]
〈x8−a(x)〉 . Let C = 〈gai(x)〉 =

〈x4 + 2x2 + 2〉, then C′ = 〈hai(x)〉 = 〈(x2 + 1)2〉. Since (gai(x), hai(x)) = 1, there exists a
LCD annihilator code of parameter [24, 15, 3]3.

Example 3. Let a(x) = −(x4 − 1), then Ra = F3[x]
〈x6−a(x)〉 . Let C = 〈gai(x)〉 = 〈x3 + 2x2 +

x+1〉, then (gai(x), hai(x)) = 1 and hence there exists a LCD annihilator code of parameter
[18, 9, 3]3.
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