On spectral properties of neighbourhood second Zagreb matrix of graph

Document Type : Original paper

Authors

School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, 752050, India

Abstract

Let G be a simple graph with vertex set V(G)={1,2,,n} and δ(i)={i,j}E(G)d(j), where d(j) is the degree of the vertex j in G. Inspired by the second Zagreb matrix and neighborhood first Zagreb matrix of a graph, we introduce the neighborhood second Zagreb matrix of G, denoted by NF(G). It is the n×n matrix whose ij-th entry is equal to δ(i)δ(j), if i and j are adjacent in G and 0, otherwise. The neighborhood second Zagreb spectral radius ρNF(G) is the largest eigenvalue of NF(G). The neighborhood second Zagreb energy E(NF) of the graph G is the sum of the absolute values of the eigenvalues of NF(G). In this paper, we obtain some spectral properties of NF(G). We provide sharp bounds for ρNF(G) and E(NF), and obtain the corresponding extremal graphs.

Keywords

Main Subjects


[1] R.B. Bapat, Graphs and Matrices, Second Edition, Hindustan Book Agency, New Delhi, 2018.
[2] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, New York, 2011. https://doi.org/10.1007/978-1-4614-1939-6
[3] L.V. Collatz and U. Sinogowitz, Spektren endlicher grafen, Abh. Math. Semin. Univ. Hambg. 21 (1957), 63–77.  https://doi.org/10.1007/BF02941924
[4] J. Day and W. So, Singular value inequality and graph energy change, The Electron. J. Linear Algebra 16 (2007), 291–299.
[5] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, and Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011), no. 2, 613–626.
[6] H.A. Ganie, U. Samee, S. Pirzada, and A.M. Alghamadi, Bounds for graph energy in terms of vertex covering and clique numbers., Electron. J. Graph Theory Appl. 7 (2019), no. 2, 315–328.  https://dx.doi.org/10.5614/ejgta.2019.7.2.9
[7] M. Ghorbani and M.A. Hosseinzadeh, A note of Zagreb indices of nanostar dendrimers, Optoelectron. Adv. Mat. 4 (2010), no. 11, 1877–1880.
[8] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz. 103 (1978), 1–22.
[9] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), no. 4, 351–361.  https://doi.org/10.5562/cca2294
[10] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83–92.
[11] I. Gutman, E.A. Martins, M. Robbiano, and B. San Martin, Ky fan theorem applied to Randi´c energy, Linear Algebra Appl. 459 (2014), 23–42.  https://doi.org/10.1016/j.laa.2014.06.051
[12] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535–538.  https://doi.org/10.1016/0009-2614(72)85099-1
[13] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, United Kingdom, 2012. 
[14] A. Ilic, M. Ilic, and B. Liu, On the upper bounds for the first Zagreb index, Kragujevac J. Math. 35 (2011), no. 1, 173–182.
[15] N. Jafari Rad, A. Jahanbani, and I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 79 (2018), no. 2, 371–386.
[16] X. Li, Y. Shi, and I. Gutman, Graph Energy, Springer, New York, 2012.  
[17] M. Liu and B. Liu, The second Zagreb indices of unicyclic graphs with given degree sequences, Discrete Appl. Math. 167 (2014), 217–221.  https://doi.org/10.1016/j.dam.2013.10.033
[18] R. Liu and W.C. Shiu, General Randić matrix and general Randi´c incidence matrix, Discrete Appl. Math. 186 (2015), 168–175.  https://doi.org/10.1016/j.dam.2015.01.029
[19] S. Mondal, S. Barik, N. De, and A. Pal, A note on neighborhood first Zagreb energy and its significance as a molecular descriptor, Chemom. Intell. Lab. Syst. 222 (2022), Article ID: 104494. https://doi.org/10.1016/j.chemolab.2022.104494
[20] S. Mondal, N. De, and A. Pal, On some new neighbourhood degree based indices, ACTA Chemica IASI 27 (2019), no. 1, 31–46.
[21] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007), no. 2, 1472–1475.  https://doi.org/10.1016/j.jmaa.2006.03.072
[22] S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), no. 2, 113–124.
[23] S. Pirzada, H.A. Ganie, and U.T. Samee, On graph energy, maximum degree and vertex cover number, Le Matematiche 74 (2019), no. 1, 163–172.
[24] S. Pirzada and S. Khan, On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph, Comp. Appl. Math. 42 (2023), no. 4, Article number: 152.  https://doi.org/10.1007/s40314-023-02290-1
[25] B.R. Rakshith, On Zagreb energy and edge-Zagreb energy, Commun. Comb. Optim. 6 (2021), no. 1, 155–169. https://doi.org/10.22049/cco.2020.26901.1160
[26] H. Shooshtary and J. Rodriguez, New bounds on the energy of a graph, Commun. Comb. Optim. 7 (2022), no. 1, 81–90. https://doi.org/10.22049/cco.2021.26999.1179
[27] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, John Wiley & Sons, United States, 2008.
[28] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), no. 1, 17–20.  https://doi.org/10.1021/ja01193a005
[29] H. Yuan, A bound on the spectral radius of graphs, Linear Algebra Appl. 108 (1988), 135–139.  https://doi.org/10.1016/0024-3795(88)90183-8
[30] F. Zhan, Y. Qiao, and J. Cai, On edge-Zagreb spectral radius and edge-Zagreb energy of graphs, Linear Multilinear Algebra 66 (2018), no. 12, 2512–2523.  https://doi.org/10.1080/03081087.2017.1404960
[31] B. Zhou, On the spectral radius of nonnegative matrices, Australas. J. Combin. 22 (2000), 301–306.
[32] B. Zhou, I. Gutman, and T. Aleksic, A note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), no. 2, 441–446.