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Abstract: Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} and δ(i) =

Σ{i,j}∈E(G)d(j), where d(j) is the degree of the vertex j in G. Inspired by the second

Zagreb matrix and neighborhood first Zagreb matrix of a graph, we introduce the
neighborhood second Zagreb matrix of G, denoted by NF (G). It is the n × n matrix

whose ij-th entry is equal to δ(i)δ(j), if i and j are adjacent in G and 0, otherwise.

The neighborhood second Zagreb spectral radius ρNF
(G) is the largest eigenvalue of

NF (G). The neighborhood second Zagreb energy E(NF ) of the graph G is the sum of

the absolute values of the eigenvalues of NF (G). In this paper, we obtain some spectral

properties of NF (G). We provide sharp bounds for ρNF
(G) and E(NF ), and obtain

the corresponding extremal graphs.
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1. Introduction

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} and edge set E(G). If

two vertices i and j are adjacent, we denote it by i ∼ j. The edge between i and

j is denoted by {i, j}. The adjacency matrix of G is defined as the n × n matrix

A(G) = [aij ], where aij = 1, if i and j are adjacent in G and 0, otherwise. Since A(G)

is a real symmetric matrix, all its eigenvalues are real. Let µ1 ≥ µ2 ≥ · · · ≥ µn be the

eigenvalues of A(G) arranged in nonincreasing order. The largest eigenvalue µ1(G)
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of A(G) is called the spectral radius of G and is denoted by ρ(G). The neighborhood

set of a vertex i in G is defined as the collection of vertices that are adjacent to i,

and it is denoted by NG(i). Let d(i) denote the degree of the vertex i. Note that

d(i) = |NG(i)|.
Let M be a complex m × n matrix with singular values σ1(M) ≥ σ2(M) ≥ · · · ≥
σn(M). The energy of M is defined by Nikiforov [21] as the sum of the singular

values of the matrix M , that is, E(M) =
∑n

i=1 σi(M). Note that if M is an n × n
Hermitian matrix with eigenvalues µ1(M) ≥ µ2(M) ≥ · · · ≥ µn(M), then the singular

values of M are the moduli of µi(M) taken in descending order. In [21], the author

provided bounds on the energy of M using matrix norms. Gutman [8] introduced

the energy of a graph G as E(A), where A(G) is the adjacency matrix of G, that is,

E(A) =
∑n

i=1|µi|.
The graph energy has been extensively studied; see, for example [4, 16, 30, 32]. For

some recent developments on the bounds for the graph energy, see [6, 23, 26] and the

references therein.

In mathematical chemistry, a topological index for a graph is defined as IF (G) =∑
{i,j}∈E(G) F (d(i), d(j)), where F is a suitable chosen function with the property that

F (x, y) = F (y, x). Topological indices are crucial for describing and characterizing

the molecular structure; see [9]. Weiner [28] introduced the first topological index,

known as Weiner index to calculate the boiling points of alkanes. In [12], Gutman

and Trinajstić observed that in the approximate expression for total π-electron energy

two terms occur:

M1(G) =

n∑
i=1

d(i)2 and M2(G) =
∑

{i,j}∈E(G)

d(i)d(j).

Later, Todeschini and Consonni [27] named M1 and M2 as the first Zagreb index

and the second Zagreb index. See also the article by Nikolić et al. [22] for more

background. In [5], Doslic et al. proved that

M1(G) =
∑

{i,j}∈E(G)

d(i) + d(j) =

n∑
i=1

d(i)2.

For more information about the mathematical properties of the first and second

Zagreb indices, see [10, 14, 17, 22].

Let δ(i) =
∑

{i,j}∈E(G)

d(j) be the sum of the degrees of the vertices that are adjacent

to i. Interestingly, for a graph G on n vertices,

n∑
i=1

δ(i) = M1(G).

Ghorbani and Hosseinzadeh [7] introduced the neighborhood versions of the first and
second Zagreb indices of G as

M ′1(G) =
∑

{i,j}∈E(G)

δ(i) + δ(j) and M ′2(G) =
∑

{i,j}∈E(G)

δ(i)δ(j),
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respectively, and computed them for an infinite family of nanostar dendrimers. The

index M ′1(G) is called the neighborhood first Zagreb index and the index M ′2(G) is

called the neighborhood second Zagreb index. In [20], Mondal et al. investigated the

chemical applicability of M ′2(G) and found that M ′2(G) has a significant correlation

with entropy and acentric factor in comparison with M1(G) and M2(G).

Given a graph G and a topological index IF (G), we can always associate a matrix

AF to the graph G in the following way [15].

(AF )ij =

{
F (d(i), d(j)), if {i, j} ∈ E(G),

0, otherwise.

In [15], Rad et al. introduced the first Zagreb matrix and the second Zagreb matrix

of a graph by taking F (d(i), d(j)) = di+dj and F (d(i), d(j)) = didj , respectively, and

defined the corresponding energies, named as the first Zagreb energy and the second

Zagreb energy. It was observed that the first Zagreb energy and the first Zagreb index

depend on the eigenvalues of the first Zagrb matrix similar to the case of adjacency

matrix. The authors also obtain bounds for the first Zagreb energy and the Zagreb

Estrada index. In [25], Rakshith investigated the properties of edge-Zagreb energy.

Recently, Zhan et al. [30] studied the second Zagreb matrix (naming it as the edge-

Zagreb matrix). The authors obtained bounds on the spectral radius of the second

Zagreb matrix and the energy, and characterized the extremal graphs.

Mondal et al. [19] investigated the neighborhood version of the first Zagreb matrix

and the corresponding energy. Inspired by the neighborhood first Zagreb matrix, we

introduce the neighborhood version of the second Zagreb matrix of a graph G, denoted

by NF (G) (or simply by NF ), which is defined as the n × n matrix NF (G) = [ni,j ],

where

nij =

{
δ(i)δ(j), if {i, j} ∈ E(G),

0, otherwise.

Observe that NF (G) is a real, symmetric matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λn be

the eigenvalues of NF (G) arranged in nonincreasing order. The largest eigenvalue of

NF (G) is called neighborhood second Zagreb spectral radius of G and is denoted by

ρNF
(G). The spectrum of NF (G) is defined as S(G) = (λ1(G), λ2(G), . . . , λn(G)).

Similar to the classical graph energy, the neighborhood second Zagreb energy is de-

fined as

E(NF ) =

n∑
i=1

|λi|.

In this article, we study the neighborhood second Zagreb matrix and its eigenvalues.

Given a graph, first we obtain some fundamental properties of the neighborhood

second Zagreb matrix of G. It has been observed that NF (G) satisfies many spectral

properties similar to the adjacency matrix of G. It is well known that G is bipartite

if and only if the spectrum of A(G) is symmetric about the origin. Interestingly, the

same is true for the neighborhood second Zagreb matrix. We prove that a graph G
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is bipartite if and only if the spectrum of NF (G) is symmetric about the origin. The

spectral radiusA(G) and the energy of a graph corresponding toA(G) are well studied.

We consider the neighborhood second Zagreb spectral radius and the neighborhood

second Zagreb energy of G, and obtain several bounds in terms of different graph

parameters. The extremal graphs are also characterized.

The paper is organized as follows: Section 2 contains some known results that will

be used to prove our main results in the subsequent sections. In Section 3, we prove

some properties of the neighborhood second Zagreb matrix. In Section 4, we study

the spectral properties of NF related to graph structure. We obtain the bounds for

the spectral radius of NF and characterize the respective extremal graphs. In Section

5, we provide bounds for the neighborhood second Zagreb energy using det(NF ), trace

of N2
F , M ′2(G), and δ(i), and then identify the extremal graphs.

2. Preliminaries

This section contains some known results that will be used later. We use the notations

Cn, Kn, Sn, Kn1,n2 to denote the cycle, complete graph, star, and complete bipartite

graph of order n, respectively. By kG, we denote k copies of G. By 0, we denote the

zero matrix of an appropriate size. We begin with the following result on singular

values of the sum of two matrices.

Theorem 1. (Day and So [4]) Let A and B be two n× n matrices. Then

n∑
i=1

σi(A+B) ≤
n∑
i=1

σi(A) +

n∑
i=1

σi(B).

The equality holds if and only if there exists a unitary matrix P such that both PA and PB
are positive semidefinite matrices.

The following result on energy of a blocked matrix is proved by Gutman et al. in

[11].

Lemma 1. (Gutman et al. [11]) Let C be a symmetric matrix of the form

C =

 0 A 0
AT 0 B
0 BT 0

 ,

where A and B are two real rectangular matrices. Then

E(C) ≤ 2E(A) + 2E(B).

The equality holds if and only if AB = 0.
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The following two lemmas provide bounds on the spectral radius of a connected graph

G.

Lemma 2. (Collatz and Sinogowitz [3], Yuan [29]) Let G be a connected graph on n
vertices and m edges. Then

2m

n
≤ ρ(G) ≤

√
2m− n+ 1.

The equality in the left-hand side inequality holds if and only if G is regular, and the equality
in the right-hand side inequality holds if and only if G ∼= Sn or G ∼= Kn.

Lemma 3. (Collatz and Sinogowitz [3], Zhou [31]) Let G be a graph on n vertices and
dmax = max{d(i) : i ∈ V (G)}. Then√

M1(G)

n
≤ ρ(G) ≤ dmax.

The equality in the left-hand side inequality holds if and only if G is a regular or semiregular
graph. If G is a connected graph, then the equality in the right-hand side inequality holds if
and only if G is regular.

The following two crucial results on the spectral radius of irreducible nonnegative

matrices are proved in [13] and [2], respectively.

Theorem 2. (Horn and Johnson [13]) Let A = (aij) be an n× n irreducible nonnegative
matrix with spectral radius ρ(A). Then

min
1≤i≤n

n∑
j=1

aij ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

aij .

The equality on the left and right-hand sides of inequalities holds if and only if the row sums
of A are equal.

Theorem 3. (Brouwer and Haemers [2]) Let A be an n×n irreducible nonnegative matrix
with spectral radius ρ(A). Suppose that a ∈ R, and x ≥ 0, x 6= 0. If Ax ≤ ax, then a ≥ ρ(A).

The following result is based on the number of distinct eigenvalues of an irreducible

nonnegative symmetric matrix.

Theorem 4. (Liu and Shiu [18]) Let A be an n × n (n ≥ 2) irreducible nonnegative
symmetric matrix. Let α1 be the maximum eigenvalue of A and x be the unit Perron-
Frobenius eigenvector of A. Then A has t (2 ≤ t ≤ n) distinct eigenvalues if and only if
there exist t− 1 real numbers α2, . . . , αt with α1 > α2 > · · · > αt such that

t∏
i=2

(A− αiIn) =

t∏
i=2

(α1 − αi)xxT .

Moreover, α1 > α2 > · · · > αt are exactly the t distinct eigenvalues of A.
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The following inequality on nonnegative real numbers is proved in [32].

Lemma 4. (Zhou et al. [32]) Let a1, a2, . . . , an be nonnegative real numbers. Then

n
[ 1

n

n∑
i=1

ai −
( n∏
i=1

ai

) 1
n
]
≤ n

n∑
i=1

ai −
( n∑
i=1

√
ai

)2
≤ n(n− 1)

[ 1

n

n∑
i=1

ai −
( n∏
i=1

ai

) 1
n
]
.

3. Properties of neighborhood second Zagreb matrix

This section contains some fundamental properties of the neighborhood second Zagreb

matrix of a graph similar to the adjacency matrix. Given a graph G, let us start with

the trace of the powers of NF . Let Lk be the k-th spectral moment of NF , that is,

Lk = tr(Nk
F ) =

n∑
i=1

λki . Then observe that L0 = tr(N0
F ) = n and L1 = tr(NF ) = 0.

Further, it can be shown that

L2 = tr(N2
F ) = 2

∑
i∼j

δ2(i)δ2(j), (3.1)

L3 = tr(N3
F ) = 6

∑
i∼j∼k∼i

δ2(i)δ2(k)δ2(j), (3.2)

L4 = tr(N4
F ) =

n∑
i=1

n∑
j=1

( ∑
k:i∼k∼j

δ(i)δ2(k)δ(j)
)2
. (3.3)

Let G be a graph on n vertices. A linear subgraph H of G is a disjoint union of

some edges and some cycles in G. Let φA(G;x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an
be the characteristic polynomial of A(G). Then a0 = 1, a1 = 0 and a2 is the number

of edges in G. In general, we have (see [1])

ak =
∑

H∈Hk

(−1)c1(H)+c(H)(2)c(H), k = 1, 2, . . . , n,

where Hk is the set of all linear subgraphs H of G of size k, and c1(H) denotes the

number of components of size 2 in H and c(H) denotes the number of cycles in H.

A similar description can be given for the coefficients of the characteristic poly-

nomial of the neighborhood second Zagreb matrix of G. Let φNF
(G;x) = b0x

n +

b1x
n−1 + · · · + bn−1x + bn be the characteristic polynomial of NF (G). Then, b0 = 1

and the other coefficients of φNF
(G;x) can be expressed in the following way.

Theorem 5. Let G be a graph on n vertices, and φNF (G;x) = b0x
n + b1x

n−1 + · · · +
bn−1x+ bn be the characteristic polynomial of NF (G). Then

bk =
∑

H∈Hk

(−1)c1(H)+c(H)2c(H)
∏

v∈V (H)

δ2(v), k = 1, 2, . . . , n,

where Hk is the set of all linear subgraphs H of G of size k.
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Proof. Observe that bk is equal to (−1)k times the sum of all k×k principal minors

of NF and each k × k principal minor is of the form

Q =

∣∣∣∣∣∣∣∣∣
0 δ(i1)δ(i2) · · · δ(i1)δ(ik)

δ(i2)δ(i1) 0 · · · δ(i2)δ(ik)
...

...
. . .

...

δ(ik)δ(i1) δ(ik)δ(i2) · · · 0

∣∣∣∣∣∣∣∣∣ .
By Leibniz’s formula for determinant, we have

Q =
∑
π

sgn(π)δ(i1)δ(σ(i1)) · · · δ(ik)δ(σ(ik)),

where the summation is over all permutations of 1, 2, . . . , k.

Consider a nonzero term of the form δ(i1)δ(σ(i1)) · · · δ(ik)δ(σ(ik)). Since π admits

a cycle decomposition, such a term corresponds to an edge joining i and j in G as well

as some cycles in G. Thus, each nonzero term in the summation arises from a setHk of

all linear subgraphs H of G of size k. Note that sgn(π) is (−1)k−c1(H)−c(H) and each

linear subgraph gives rise to 2c(H) terms in the summation. Since each cycle can be as-

sociated with a cyclic permutation in two ways, the term δ(i1)δ(σ(i1)) · · · δ(ik)δ(σ(ik))

equals to (δ(i1)δ(i2) · · · δ(ik))2. Thus,

bk = (−1)k
∑

H∈Hk

(−1)k−c1(H)−c(H)2c(H)
k∏
j=1

δ2(ij) =
∑

H∈Hk

(−1)c1(H)+c(H)2c(H)
∏

v∈V (H)

δ2(v).

As a consequence of the above result, we have the following corollary that depicts a

nice relationship between the determinant of the neighborhood second Zagreb matrix

and the determinant of the adjacency matrix of a graph G.

Corollary 1. Let G be a graph on n vertices. Let A and NF be the adjacency matrix
and the neighborhood second Zagreb matrix of G, respectively. Then

det(NF ) =
n∏
i=1

δ2(i) det(A).

Proof. Note that bn = (−1)n det(NF ) and det(A) =
∑

H∈Hn

(−1)n−c1(H)−c(H)2c(H).

By Theorem 5

bn =
∑

H∈Hn

(−1)c1(H)+c(H)2c(H)
n∏
i=1

δ2(i),

where the summation is over all permutations of 1, 2, . . . , n. Thus,

det(NF ) =

n∏
i=1

δ2(i)
∑

H∈Hn

(−1)n−c1(H)−c(H)2c(H) =

n∏
i=1

δ2(i) det(A).
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A matching M of size k in a graph G is a set of k independent edges. The cardinality

of a maximum matching in G is called the matching number of G and is denoted by

m(G). LetMk(G) denote the set of all matchings of size k in G. A matching in G is

called a perfect matching if every vertex of G is incident to an edge of the matching.

For an edge e = {i, j} of G, let w(e) = δ(i)δ(j) be the neighborhood weight of the

edge e. Denote

J
(k)
2 (G) =

∑
{eit :1≤t≤k}∈Mk(G)

(
w(ei1 )w(ei2 ) · · ·w(eik )

)2
.

It is known that the rank of the adjacency matrix of a tree is related to the matching

number m(T ). For a tree T on n vertices, the multiplicity of its 0 as an eigenvalue

of A(T ) is n − 2m(T ). Further, A(T ) is nonsingular if and only if T has a perfect

matching, and in this case, the perfect matching is unique. We provide a similar

result for the neighborhood second Zagreb matrix NF (T ) in the following corollary.

Corollary 2. Let T be a tree on n vertices, and φNF (T ;x) = xn + b1x
n−1 + b2x

n−2 +
· · ·+ bn−1x+ bn. Then

(i) b2k+1 = 0 and b2k+2 = (−1)k+1J
(k+1)
2 (T ), for k = 0, 1, . . . ;

(ii) the multiplicity of 0, as an eigenvalue of NF (T ) is n− 2m(T );

(iii) NF (T ) is nonsingular if and only if T has a perfect matching.

Proof. Since T has no cycles, (i) follows from Theorem 5. Now, using (i) we have

φNF
(T ;x) = xn − J(1)

2 xn−2 + · · ·+ (−1)lJ
(l)
2 xn−2l,

= xn−2l(x2l − J(1)
2 x2l−2 + · · ·+ (−1)lJ

(l)
2 ).

Since T has maximum matching l, J
(l)
2 6= 0. Hence, we have (ii). If T has a perfect

matching, then l = n
2 and hence (iii) follows from (ii).

4. Spectral properties of the neighborhood second Zagreb ma-
trix

Let G be a graph on n vertices. In this section, we discuss some properties of the

eigenvalues of NF (G) and obtain bounds for the spectral radius of NF (G). It is

well known that a graph G is bipartite if and only if the eigenvalues of A(G) are

symmetric about the origin. The same holds for the eigenvalues of the neighborhood

second Zagreb matrix of a bipartite graph. This is proved in our next result, along

with some other interesting properties of the eigenvalues of NF (G).

Proposition 1. Let G be a graph on n vertices with no isolated vertices. Let µ1 ≥ µ2 ≥
· · · ≥ µn and λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A(G) and NF (G), respectively. Then
the following are true.
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(i) G is bipartite if and only if λi = −λn−i+1, for i = 1, 2, . . . , bn
2
c.

(ii) If G is r-regular, then λi = r4µi, for i = 1, 2, . . . , n. Moreover, if G ∼= Kn, then
λ1 = (n− 1)5 and λ2 = · · · = λn = −(n− 1)4.

(iii) If G is a (r, s)-semiregular bipartite graph, then λi = r2s2µi, for i = 1, 2, . . . , n.
Moreover, if G ∼= Kn1,n2 , where n1 + n2 = n, then λ1 = −λn = n2

1n
2
2

√
n1n2 and

λ2 = · · · = λn−1 = 0.

Proof. (i) If G is a bipartite graph, then with a suitable labelling of its vertices

corresponding to the bipartition, NF (G) can be written as

NF (G) =

(
0 B
BT 0

)
.

Assume (λ, Z) be an eigenpair of NF (G), where Z = (z1, z2)T . Then, observe

that (−λ, Z∗) is also an eigenpair of NF (G), where Z∗ = (z1,−z2)T . Thus, λi =

−λn−i+1 for i = 1, 2, . . . , bn2 c. Conversely, if λi = −λn−i+1 for i = 1, 2, . . . , bn2 c,
let λ1, λ2, . . . , λk,−λk,−λk−1, . . . ,−λ1 be the nonzero eigenvalues of NF (G).

Then the characteristic polynomial of NF (G)

φNF
(G;x) = xn−2k(x2 − λ21) · · · (x2 − λ2k).

Thus, b2k+1 = 0, k = 0, 1, . . . . Hence, G has no odd cycles and is bipartite.

(ii) If G is r-regular, then NF (G) = r4A(G). Hence, λi = r4µi for i = 1, 2, . . . , n.

Now, if G ∼= Kn, then r = n− 1, µ1 = (n− 1) and µ2 = · · · = µn = −1. Thus,

λ1 = (n− 1)5 and λ2 = · · · = λn = −(n− 1)4.

(iii) If G is a (r, s)-semiregular bipartite graph, then NF (G) = r2s2A(G). Thus,

λi = r2s2µi for i = 1, 2, . . . , n. If G ∼= Kn1,n2
, then µ1 = −µn =

√
n1n2 and

µ2 = · · · = µn−1 = 0. Thus, λ1 = −λn = n21n
2
2

√
n1n2 and λ2 = · · · = λn−1 = 0.

The following is an interesting characterization.

Lemma 5. Let G be a graph on n vertices with no isolated vertices. Then |λ1| = |λ2| =
· · · = |λn| if and only if n is even and G ∼= n

2
K2.

Proof. First, assume that G is connected. Then, by the Perron-Frobenius theorem,

λ1 is positive and algebraically simple. So λ2 < 0 and λ2 = −λ1. Since λ1 ≥ λ2 ≥
· · · ≥ λn and

n∑
i=1

λi = 0. Therefore, we must have n = 2 and G ∼= K2. Now, if

G is disconnected with no isolated vertex, then λ1 > 0. Therefore, each connected

component of G must be K2, that is, G ∼= n
2K2. The converse is true by using

Proposition 1.

Since NF (G) is a nonnegative symmetric irreducible matrix, we have an immediate

result on the number of distinct eigenvalues of NF (G) by applying Theorem 4.
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Lemma 6. Let G be a connected graph on n ≥ 2 vertices, and λ1 be the largest eigenvalue
of NF (G) and x be its corresponding unit eigenvector. Then NF (G) has t (2 ≤ t ≤ n) distinct
eigenvalues if and only if there exist t − 1 real numbers λ2, . . . , λt with λ1 > λ2 > · · · > λt
such that

t∏
i=2

(NF (G)− λiIn) =
t∏
i=2

(λ1 − λi)xxT .

Moreover, λ1 > λ2 > · · · > λt are exactly t distinct NF (G) eigenvalues.

The above result provides an equivalent condition for a connected graph with t ≥ 2

distinct neighborhood second Zagreb eigenvalues. As an application, the characteri-

zation of a connected graph with two distinct NF (G) eigenvalues is given below.

Theorem 6. Let G be a connected graph on n vertices. Then NF (G) has exactly two
distinct eigenvalues if and only if G ∼= Kn.

Proof. If G ∼= Kn, then from Proposition 1, NF (G) has two distinct eigenvalues.

Conversely, suppose that λ1 > λ2 are two distinct eigenvalues of NF (G). By Lemma

6, NF (G) = λ2In + (λ1 − λ2)xxT . Since x is a positive eigenvector, the off-diagonal

entries of NF (G) are nonzero. Thus, G ∼= Kn.

Next, we discuss the neighborhood second Zagreb spectral radius of graphs. The

following result shows that the complete graph Kn has the maximum neighborhood

second Zagreb spectral radius among all connected graphs on n vertices.

Theorem 7. Let G be a connected graph on n vertices. Then

ρNF (G) ≤ (n− 1)5.

The equality holds if and only if G ∼= Kn.

Proof. For a connected graph G on n vertices δ(i) ≤ (n − 1)2, for each vertex

i ∈ V (G). Taking y as all ones vector, we have

(NF (G)y)i =
∑

{i,j}∈E(G)

δ(i)δ(j) ≤ (n− 1)5.

Now, using Theorem 3, we have ρNF
(G) ≤ (n − 1)5. If equality holds, then for

each pair of vertices i and j, δ(i)δ(j) = (n − 1)4, simultaneously, with the fact that

δ(i) ≤ (n− 1)2. Hence G ∼= Kn.

The following result shows that Kn
2 ,n2

has the maximum neighborhood second Za-

greb spectral radius among all connected bipartite graphs on n vertices when n is

even.
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Theorem 8. Let G be a connected bipartite graph on n = 2k vertices where k ∈ N. Then

ρNF (G) ≤
(n
2

)5
.

The equality holds if and only if G ∼= Kn
2
,n
2

.

Proof. Let G be a connected bipartite graph on n vertices with a partition of the

vertex set as (V1, V2), where V1 and V2 contain n1 and n2 vertices, respectively, and

n = n1 +n2. We have δ(i) ≤ n1n2 ≤
(

n
2

)2
, for each vertex i ∈ V (G). Taking y as all

ones vector, we have

(NF (G)y)i =
∑

{i,j}∈E(G)

δ(i)δ(j) ≤
∑

{i,j}∈E(G)

n2
1n

2
2 ≤

(n
2

)5
.

Then using Theorem 3, we have ρNF
(G) ≤

(
n
2

)5
.

If equality holds, then for each pair of vertices i and j, δ(i)δ(j) = n21n
2
2 =

(
n
2

)4
,

simultaneously, with the fact that δ(i) ≤ n1n2 ≤
(
n
2

)2
. Hence, G ∼= Kn

2 ,n2
.

For a graph G on vertices 1, 2, . . . , n, let δmin = min{δ(i) : i ∈ V (G)} and δmax =

max{δ(i) : i ∈ V (G)}. Thus, we have δ(i)δ(j) ≥ δ2min and δ(i)δ(j) ≤ δ2max, for all

edges {i, j} in G. The following result shows a nice relationship between the spectral

radius of the neighborhood second Zagreb matrix of G and the spectral radius of

A(G).

Theorem 9. Let G be a graph. Then

ρ(G)δ2min ≤ ρNF (G) ≤ ρ(G)δ2max.

The equalities on the left and right-hand sides hold if and only if G is regular.

Proof. Consider the unit eigenvector X corresponding to the eigenvalue ρNF
(G) of

NF (G). Now, applying the Rayleigh-Ritz theorem, we have

ρNF
(G) = XTNFX = 2

∑
{i,j}∈E(G)

δ(i)δ(j)xixj

≤ 2δ2max
∑

{i,j}∈E(G)

xixj = δ2maxX
TAX ≤ ρ(G)δ2max.

Thus, ρNF
(G) ≤ ρ(G)δ2max. If equality holds, then δmax = δ(i) for all i ∈ V (G),

which implies G is regular.

Similarly, by taking a unit eigenvector Y corresponding to the eigenvalue ρ(G) of

A(G) and applying the Rayleigh-Ritz theorem, we have
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ρNF
(G) ≥ Y TNFY = 2

∑
{i,j}∈E(G)

δ(i)δ(j)yiyj

≥ 2δ2min
∑

{i,j}∈E(G)

yiyj = δ2minY
TAY = ρ(G)δ2min.

Thus, ρNF
(G) ≥ ρ(G)δ2min. If equality holds, then δmin = δ(i) for all i ∈ V (G),

which implies G is regular.

The following result is a direct consequence of the above result and Lemma 2.

Corollary 3. Let G be a connected graph on n vertices and m edges. Then

2mδ2min
n

≤ ρNF
(G) ≤ δ2max

√
2m− n+ 1.

The equality on the left-hand side inequality holds if and only if G is regular, and the equality
on the right-hand side of the inequality holds if and only if G ∼= Kn.

The following result is a direct consequence of Theorem 9 and Lemma 3.

Corollary 4. Let G be a connected graph on n vertices. Then

δ2min

√
M1

n
≤ ρNF

(G) ≤ δ2maxdmax.

The equalities on the left and right-hand sides hold if and only if G is regular.

Let G be a graph on n vertices with vertex set V (G) = {1, 2, . . . , n}. Then the

neighborhood second Zagreb degree of vertex i, denoted by ri, is defined as ri =
n∑

j=1

nij . A graph G is called neighborhood second Zagreb k-regular if ri = k for

all i = 1, 2, . . . , n. The following result provides a bound on ρNF
(G) that depends on

each ri and the largest entry of NF (G).

Theorem 10. Let G be a connected graph on n vertices with the neighborhood second
Zagreb degrees r1 ≥ r2 ≥ · · · ≥ rn, and p be the largest entry of NF (G). Then

ρNF
(G) ≤

ri − p+
√

(ri − p(2i− 3))2 + 4p(i− 1)(r1 − p(i− 2))

2
.

If i = 1, then the equality holds if and only if G is neighborhood second Zagreb regular graph.
If 2 ≤ i ≤ n, then equality holds if and only if the following two conditions are true.

(i) nlj = p for 1 ≤ l ≤ n and 1 ≤ j ≤ i− 1 and l 6= j.

(ii) r1 = r2 = · · · = ri−1 ≥ ri = ri+1 = · · · = rn.
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Proof. If i = 1, then the inequality ρNF
(G) ≤ r1 is true, and by Theorem 2, equal-

ity holds if and only if the row sums of NF (G) are all equal. For 2 ≤ i ≤ n the

neighborhood second Zagreb matrix NF (G) can be written as

NF =

(
N11 N12

N21 N22

)
,

where N11 and N22 are square matrices of order i− 1 and n− i+ 1, respectively. Let

V be a diagonal matrix of order n whose first i− 1 diagonal entries are y and the rest

diagonal entries are 1, where y > 1. Then

F = V −1NFV =

(
N11

1
y
N12

yN21 N22

)
.

Since F and NF are similar matrices, we have ρNF
(G) = ρ(F ). Let c1, c2, . . . , cn be

the row sums of matrix F . For 1 ≤ l ≤ i− 1,

cl =

i−1∑
j=1

nlj +
1

y

n∑
j=i

nlj =
1

y

n∑
j=1

nlj +
(

1−
1

y

) i−1∑
j=1

nlj =
1

y
rl +

(
1−

1

y

) i−1∑
j=1

nlj ,

and for i ≤ l ≤ n,

cl = y

i−1∑
j=1

nlj +
n∑
j=i

nlj =
n∑
j=1

nlj + (y − 1)

i−1∑
j=1

nlj = rl + (y − 1)

i−1∑
j=1

nlj .

As p is the largest entry of NF (G),
i−1∑
j=1

nlj ≤ (i − 2)p for 1 ≤ l ≤ i − 1, and

i−1∑
j=1

nlj ≤ (i − 1)p for i ≤ l ≤ n. As y > 1 and r1 ≥ r2 ≥ · · · ≥ rn, for 1 ≤ l ≤ i − 1

we have cl ≤ 1
y rl +

(
1 − 1

y

)
(i − 2)p. Equality holds if and only if nlj = p, for

1 ≤ j ≤ i − 1 and r1 = rl. Similarly, for i ≤ l ≤ n, cl ≤ rl + (y − 1)(i − 1)p and

equality holds if and only if nlj = p, for 1 ≤ j ≤ i − 1 and ri = rl. Observe that

max{c1, c2, . . . , cn} ≤ max
{

1
y r1 +

(
1− 1

y

)
(i− 2)p, ri + (y − 1)(i− 1)p

}
.

Let 1
y r1 +

(
1− 1

y

)
(i− 2)p = ri + (y − 1)(i− 1)p. We have

y =
(2i− 3)p− ri +

√
(ri − p(2i− 3))2 + 4p(i− 1)(r1 − p(i− 2))

2p(i− 1)
.

We can choose y > 1 for i ≥ 2 such that

ρNF
(G) ≤ ri + (y − 1)(i− 1)p =

ri − p+
√

(ri − p(2i− 3))2 + 4p(i− 1)(r1 − p(i− 2))

2
.

If equality holds, then all the inequalities in the above argument must be equalities.

Thus, r1 = r2 = · · · = ri−1 ≥ ri = ri+1 = · · · = rn and nlj = p for 1 ≤ l ≤ n and

1 ≤ j ≤ i− 1 and l 6= j. The converse follows directly.
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The following result gives a bound on ρNF
(G) using the second spectral moment

L2 of NF (G).

Lemma 7. Let G be a connected graph on n vertices. Then

ρNF (G) ≤
√

(n− 1)L2

n
.

The equality holds if and only if G ∼= Kn.

Proof. Since tr(NF ) =
n∑

i=1

λi = 0, we have λ21 =
( n∑

i=2

λi

)2
. Applying Cauchy-

Schwartz inequality, we get

λ21 ≤ (n− 1)

n∑
i=2

λ2i .

Since L2 =
n∑

i=1

λ2i , we have λ21 ≤ (n−1)(L2−λ21). Hence the result follows. If equality

holds, then λ2 = λ3 = · · · = λn. Since the sum of the eigenvalues of NF (G) is zero,

therefore G has two distinct eigenvalues. Thus, from Theorem 6 G ∼= Kn. Converse

can be proved using Proposition 1.

As a consequence of the above result, and by using the fact that
∑

{i,j}∈E(G)

(δ(i)δ(j))2

≤
( ∑
{i,j}∈E(G)

δ(i)δ(j)
)2

, we have the following corollary.

Corollary 5. Let G be a connected graph on n vertices. Then ρNF
(G) ≤ M ′2

√
2(n−1)
n

.

The equality holds if and only if G ∼= K2.

5. The neighborhood second Zagreb energy of graphs

In this section, we provide bounds on the neighborhood second Zagreb energy of

graphs. The following lemma can be proved similarly to Proposition 1.

Lemma 8. Let G be a graph on n vertices with no isolated vertices. Then the following
are true.

(1) If G is r-regular, then E(NF ) = r4E(A). Moreover, if G ∼= Kn, then E(NF ) = 2(n−1)5,

and if G ∼= Cn, then E(NF ) = 16
n−1∑
k=0

|2 cos( 2πk
n

)|.

(2) If G is a (r, s)-semiregular bipartite graph, then E(NF ) = r2s2E(A). Moreover, if
G = Kn1,n2 (n1 + n2 = n), then E(NF ) = 2n2

1n
2
2

√
n1n2.

The following lemma provides a relationship between the neighborhood second

Zagreb energy and the determinant of the neighborhood second Zagreb matrix.
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Lemma 9. Let G be a graph on n ≥ 2 vertices. Then

√
L2 + n(n− 1)(detNF )

2
n ≤ E(NF ) ≤

√
(n− 1)L2 + n(detNF )

2
n .

Proof. We know L2 =
n∑

i=1

λ2i . Taking ai = λ2i for i = 1, 2, . . . , n on the left-hand

side inequality of Lemma 4, we have

n∑
i=1

λ2i − n
( n∏
i=1

λ2i

) 1
n ≤ n

n∑
i=1

λ2i −
( n∑
i=1

|λi|
)2
.

Thus, we have

L2 − n(det(NF ))
2
n ≤ nL2 − E(NF )2,

which implies that

E(NF ) ≤
√

(n− 1)L2 + n(detNF )
2
n .

Similarly, if we take ai = λ2i for i = 1, 2, . . . , n on the right-hand side inequality of

Lemma 4, we have E(NF ) ≥
√
L2 + n(n− 1)(detNF )

2
n .

Let G(i, j) be the spanning subgraph of a graph G, having just a single edge between

the vertices i and j. Observe that

NF (G) =
∑

{i,j}∈E(G)

NF (G(i, j)).

In our next result, we give a bound on the neighborhood second Zagreb energy using

the neighborhood second Zagreb index.

Theorem 11. Let G be a graph on n vertices with no isolated vertices. Then E(NF ) ≤
2M ′2(G). The equality holds if and only if n is even and G ∼= n

2
K2.

Proof. Note that E(NF (G(i, j))) = 2δ(i)δ(j). By a repeated application of Theorem
1, we have

E(NF ) ≤ 2
∑

{i,j}∈E(G)

δ(i)δ(j) = 2M ′2(G).

If G ∼= n
2K2, it is easy to check that equality occurs. Conversely, if equality holds,

that is, E(NF ) = 2M ′2(G), then we have∑
{i,j}∈E(G)

E(NF (G(i, j))) = E(NF ) ≤ E(NF (G(i, j))) + E
( ∑
{u,v}∈E(G)\{i,j}

NF (G(u, v))
)
.

Together with Theorem 1, we get

E
( ∑
{u,v}∈E(G)\{i,j}

NF (G(u, v))
)

=
∑

{u,v}∈E(G)\{i,j}
E(NF (G(u, v))).



290 On spectral properties of neighborhood second Zagreb matrix

By repeated application of the above process, we have

E(NF (G(ix, jx)) +NF (G(iy , jy))) = E(NF (G(ix, jx))) + E(NF (G(iy , jy))).

If no two edges of G are incident, then we are done. Otherwise, if there are two

edges, say ex = {ix, jx} and ey = {iy, jy} and ex and ey share a vertex, that is, jx = iy
then the matrix NF (G(ix, jx)) +NF (G(iy, jy)) is permutation similar to a matrix of

the form

(
Z 0

0 0

)
, where Z =

 0 δ(ix)δ(jx) 0
δ(ix)δ(jx) 0 δ(iy)δ(jy)

0 δ(iy)δ(jy) 0

 .

Then
E(NF (G(ix, jx)) +NF (G(iy , jy)) = E(Z).

Let A = δ(ix)δ(jx) and B = δ(iy)δ(jy). Observe that the structure of the above

defined matrix Z and the matrix C in Lemma 1 are the same. Thus using Lemma 1,

AB = 0. But then, AB = 0 holds if and only if either {ix, jx} /∈ E(G) or {iy, jy} /∈
E(G), which is a contradiction. Hence {ix, jx}, and {iy, jy} do not share a vertex.

By applying this process repeatedly, we obtain that n is even and G ∼= n
2K2.

Let G(i) be the spanning subgraph of a graph G, with edges only between the
vertices adjacent to i. Then the neighborhood second Zagreb matrix of G(i) has the
following form:

NF (G(i)) =

0 x 0

x′ 0 y′

0 y 0

 ,

where the i-th component of the vector
(
x′ 0 y′

)
is δ(i)δ(j), if the vertex i is adjacent

to j in G, and 0, otherwise. The neighborhood second Zagreb matrix NF (G) can be
expressed in terms of NF (G(i)) as

2NF (G) =

n∑
i=1

NF (G(i)).

The following result gives another bound on E(NF ).

Theorem 12. Let G be a graph on n vertices. Then

E(NF ) ≤
n∑
i=1

√ ∑
{i,j}∈E(G)

(δ(i)δ(j))2.

Proof. Applying Theorem 1, we have 2E(NF ) ≤
n∑

i=1

E(NF (G(i))). We know that

E

0 x 0
x′ 0 y′

0 y 0

 = E

0 0 x
0 0 y
x′ y′ 0

 = 2
√
x′x+ y′y.
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Now, for every vertex i, x′x + y′y =
∑

{i,j}∈E(G)

(δ(i)δ(j))2. Thus, E(NF (G(i))) =

2
√ ∑
{i,j}∈E(G)

(δ(i)δ(j))2. Hence, E(NF ) ≤
n∑
i=1

√ ∑
{i,j}∈E(G)

(δ(i)δ(j))2.

6. Conclusion and Scope

In this article, we define the neighborhood second Zagreb matrix NF (G) and its

corresponding energy. We obtain some bounds for the spectral radius and energy

of NF (G), and characterize the extremal graphs. If G is a r-regular graph, then

NF (G) = r4A(G). Therefore, the spectra of both the matrices NF (G) and A(G)

contain the same information about the graph. The spectrum of NF (G) may, however,

reveal more details about non-regular graphs. Studying the neighborhood second

Zagreb matrix may thus lead to nontivial and challenging findings regarding the

structure of graphs.

In [24], the authors have given bounds on the first Zagreb index using the

signless Laplacian matrix. The neighborhood second Zagreb matrix is merely an

illustration of a more general idea that may be applied to various graph matrices.

This can be generalized to include several matrices that reflect various structural

aspects of graphs. Such generalization is important for examining various matrix

representations in graph theory and mathematical chemistry.
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