[4] G. Bini and F. Flamini, Finite Commutative Rings and Their Applications, vol. 680, Springer Science & Business Media, New York, 2002.
[5] B. Biswas, S. Kar, M.K. Sen, and T.K. Dutta, A generalization of co-maximal graph of commutative rings, Discrete Math. Algorithms Appl. 11 (2019), no. 1, Atricle ID: 1950013.
https://doi.org/10.1142/S1793830919500137
[6] B. Biswas, R. Sen Gupta, M.K. Sen, and S. Kar, On the connectedness of square element graphs over arbitrary rings, Southeast Asian Bulletin of Mathematics 43 (2019), no. 2, 153–164.
[8] H.J. Chiang-Hsieh, N.O. Smith, and H.J. Wang, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (2007), no. 1, 1–31.
[9] J.A. Gallian, Contemporary Abstract Algebra, Houghton Mifflin, Boston, 2002.
[10] M.J. González, On distinguishing local finite rings from finite rings only by counting elements and zero divisors, Eur. J. Pure Appl. Math. 7 (2014), no. 1, 109–113.
[13] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commutative Rings 1 (2002), no. 4, 203–211.
[17] D.B. West, Introduction to Graph Theory, Prentice Hall of India, New Delhi, 2003.