CCCO COMMUN. COMB. OPT

Research Article

The zero-divisor associate graph over a finite commutative ring

Bijon Biswas¹, Raibatak Sen Gupta^{2,*}, Mridul Kanti Sen³, Sukhendu Kar⁴

¹Department of Science and Humanities, Ranaghat Government Polytechnic, Nadia - 741201, WB, India bijonsujan@gmail.com

²Department of Mathematics, Bejoy Narayan Mahavidyalaya, West Bengal-712147, India raibatak20100gmail.com

³Department of Pure Mathematics, University of Calcutta, Kolkata - 700019, India senmk6@yahoo.com

⁴ Department of Mathematics, Jadavpur University, Kolkata - 700032, India karsukhendu@yahoo.co.in

> Received: 24 March 2023; Accepted: 24 October 2023 Published Online: 3 November 2023

Abstract: In this paper, we introduce the zero-divisor associate graph $\Gamma_D(R)$ over a finite commutative ring R. It is a simple undirected graph whose vertex set consists of all non-zero elements of R, and two vertices a, b are adjacent if and only if there exist non-zero zero-divisors z_1, z_2 in R such that $az_1 = bz_2$. We determine the necessary and sufficient conditions for connectedness and completeness of $\Gamma_D(R)$ for a unitary commutative ring R. The chromatic number of $\Gamma_D(R)$ is also studied. Next, we characterize the rings R for which $\Gamma_D(R)$ becomes a line graph of some graph. Finally, we give the complete list of graphs with at most 15 vertices which are realizable as $\Gamma_D(R)$, characterizing the associated ring R in each case.

Keywords: zero-divisor, commutative ring, chromatic number, complete graph, line graph.

AMS Subject classification: 05C25, 05E40, 05C76, 13A70

1. Introduction

The study of algebraic structures using graph-theoretical tools has been an exciting research area since the previous two decades. Several graphs have been defined over

^{*} Corresponding Author

various algebraic structures, which provided valuable insights into the interplay between the algebraic properties and graph-theoretical properties. Among such graphs, the zero-divisor graph deserves special mention as it is significant from various perspectives. The concept of a zero-divisor graph was first introduced by Beck (cf. [1, 3]), and the zero-divisor graph of a commutative ring was defined in its present form by Anderson and Livingston [2]. Then, Redmond [13] generalized the zero-divisor graphs for non-commutative rings. The richness of results obtained from the zero-divisor graphs motivated the definition of several such graphs ([5–7, 16], for example) over rings and other structures.

With the motivation of further exploring the set of zero-divisors of a ring, we here introduce a simple undirected graph in the following way:

Definition 1. Let R be a finite commutative ring. The zero-divisor associate graph $\Gamma_D(R)$ over the ring R is a simple undirected graph (V, E) where $V = R - \{0\}$, and two distinct vertices a, b are adjacent if and only if $az_1 = bz_2$ for some non-zero zero-divisors z_1, z_2 (not necessarily distinct) of R.

Clearly, $\Gamma_D(R)$ is an empty graph when R is an integral domain.

The term 'zero-divisor associate' alludes to the concept of associate elements of a ring. In this paper, we first characterize the rings R for which the graph $\Gamma_D(R)$ is connected, and show that $\Gamma_D(R)$ is connected if and only if $(Z(R))^2 \neq \{0\}$. This, in turn, shows that $\Gamma_D(R)$ is connected for all commutative unital rings except local rings of characteristic p or p^2 for some prime p. It is also shown that $\Gamma_D(R)$ is complete if and only if $Ann(Z(R)) = \{0\}$. The chromatic number of $\Gamma_D(R)$ is found to be |R| - |Ann(Z(R))|. Then, we characterize the rings R for which $\Gamma_D(R)$ is realized as the line graph of some graph. In the appendix, we completely characterize the graphs having at most 15 vertices which are realizable as $\Gamma_D(R)$.

Throughout this paper, S^* denotes the non-zero elements of a set S. For any ring R, U(R) denotes the set of all units of R, Z(R) denotes the set of all zero-divisors of R, and $Ann(Z(R)) = \{z \in Z(R) \mid zz_1 = 0 \text{ for each } z_1 \in Z(R)\}$. For any $S \subseteq R$, S^2 is the set $\{xy \mid x, y \in S\}$. Char(R) denotes the characteristic of the ring R. One may see [4, 9] for general algebraic notations. The complement of the graph G is denoted by \overline{G} . Also, $a \leftrightarrow b$ denotes that the vertices a and b are adjacent. For other graph-theoretical properties, we refer to [17].

2. Connectedness of the graph $\Gamma_D(R)$

In this section we mainly consider necessary and sufficient conditions for $\Gamma_D(R)$ to be connected. We begin with several lemmas, which lead us to the main result.

Lemma 1. Let R be a finite commutative unital ring, such that $Z(R) \neq \{0\}$. Then the set of vertices corresponding to U(R) (i.e., the set of all units of R) induces a clique in $\Gamma_D(R)$. Also, the set of vertices corresponding to $Z(R)^*$ induces a clique in $\Gamma_D(R)$.

Figure 1. $\Gamma_D(R)$ for $R \in \{\mathbb{Z}_4, \mathbb{Z}_6, \mathbb{Z}_9\}$

Proof. Let zy = 0 for all $y \in Z(R)$. If possible, let $\exists u \in U(R)$ such that $u \leftrightarrow z$ in $\Gamma_D(R)$. Then $uz_1 = zz_2$ for some $z_1, z_2 \in Z(R)^*$. This shows that $uz_1 = 0$, contradicting that u is a unit. So $z \nleftrightarrow u$ for any unit u of R. Next, let $\exists z_1 \in Z(R)^*$ with $zz_1 \neq 0$. Then for any unit u, we have that $u(u^{-1}zz_1) = zz_1$. So z is adjacent to every unit u of R.

Lemma 2. Let R be a finite commutative unital ring, and $z \in Z(R)^*$. If zy = 0 for all $y \in Z(R)$, then z is not adjacent to any unit $u \in U(R)$ in $\Gamma_D(R)$. Else, z is adjacent to every unit of R in $\Gamma_D(R)$.

Proof. Let zy = 0 for all $y \in Z(R)$. If possible, let $\exists u \in U(R)$ such that $u \leftrightarrow z$ in $\Gamma_D(R)$. Then $uz_1 = zz_2$ for some $z_1, z_2 \in Z(R)^*$. This shows that $uz_1 = 0$, contradicting that u is a unit. So $z \nleftrightarrow u$ for any unit u of R. Next, let $\exists z_1 \in Z(R)^*$ with $zz_1 \neq 0$. Then for any unit u, we have that $u(u^{-1}zz_1) = zz_1$. So z is adjacent to every unit u of R.

Lemma 3. Let R be a finite commutative unital ring, and let $u \in U(R)$ and $z \in Z(R)^*$. Then in $\Gamma_D(R)$, $u \leftrightarrow z$ if and only if $1 \leftrightarrow z$.

Proof. $u \leftrightarrow z$ in $\Gamma_D(R)$ if and only if $uz_1 = zz_2$ for some $z_1, z_2 \in Z(R)^*$, i.e., $1(uz_1) = z(z_2)$, which happens if and only if $1 \leftrightarrow z$. Hence the result. \Box

Example 1. Consider the finite commutative rings \mathbb{Z}_4 , \mathbb{Z}_6 and \mathbb{Z}_9 . It is seen that $\Gamma_D(\mathbb{Z}_4)$ and $\Gamma_D(\mathbb{Z}_9)$ are not connected, but $\Gamma_D(\mathbb{Z}_6)$ is connected (cf. Figure 1). It is interesting to note that $(Z(\mathbb{Z}_4))^2 = (Z(\mathbb{Z}_9))^2 = \{0\}$, but $(Z(\mathbb{Z}_6))^2 \neq \{0\}$. We next show that $(Z(R))^2 \neq \{0\}$ is, in fact, a necessary and sufficient condition for $\Gamma_D(R)$ to be connected.

Theorem 1. Let R be a finite commutative unital ring. Then $\Gamma_D(R)$ is connected if and only if $(Z(R))^2 \neq \{0\}$.

Proof. Suppose that $(Z(R))^2 \neq \{0\}$. By Lemma 1, we already have that the sets U(R) and $Z(R)^*$ both induce cliques in $\Gamma_D(R)$. Since $R^* = U(R) \cup Z(R)^*$, it then suffices to show that $u \leftrightarrow z$ for some $u \in U(R)$ and $z \in Z(R)^*$ to prove that $\Gamma_D(R)$ is connected. As $(Z(R))^2 \neq \{0\}$, $\exists a, b \in Z(R)^*$ such that $ab \neq 0$. Noting that 1(ab) = ab, we have that the unit 1 is adjacent to the zero-divisor a. So the graph $\Gamma_D(R)$ is connected.

Conversely, let $\Gamma_D(R)$ be connected. So we necessarily have $z \leftrightarrow u$ in $\Gamma_D(R)$ for some $z \in Z(R)^*$ and $u \in U(R)$. Thus, by Lemma 2, $zy \neq 0$ for some $y \in Z(R)$, which implies that $(Z(R))^2 \neq \{0\}$. This completes the proof.

Corollary 1. The graph $\Gamma_D(\mathbb{Z}_n)$ is connected if and only if $n \neq 4$ and $n \neq p, p^2$ for any odd prime p.

Proof. Let $\Gamma_D(\mathbb{Z}_n)$ be connected. Figure 1 shows that $n \neq 4$. If n = p for any odd prime p, then \mathbb{Z}_n is a field and we arrive at a contradiction as $\Gamma_D(\mathbb{Z}_p)$ is a disjoint union of more than one isolated vertices. If possible, let $n = p^2$ for some odd prime p. Then $(Z(\mathbb{Z}_n))^2 = \{\overline{0}\}$, which contradicts the connectedness of $\Gamma_D(\mathbb{Z}_n)$ (by Theorem 1). Thus, $n \neq p, p^2$ for any odd prime p. Conversely, let $n \neq 4$ and $n \neq p, p^2$ for any odd prime p. Then either $n = p^m$ for some prime p (and m > 2), or n has at least two distinct prime factors. In either case, $(Z(\mathbb{Z}_n))^2 \neq \{\overline{0}\}$. So, by Theorem 1, the graph $\Gamma_D(\mathbb{Z}_n)$ is connected.

Theorem 2. Let R be a finite commutative unital ring. If R is either a local ring with $Char(R) \neq p, p^2$ for any prime p, or a non-local ring, then $\Gamma_D(R)$ is connected.

Proof. We first observe that $\Gamma_D(\mathbb{Z}_2 \times \mathbb{Z}_2)$ is connected. Next, let $R \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$. So R is neither (isomorphic to) $\mathbb{Z}_2 \times \mathbb{Z}_2$ nor local with Char(R) = p or p^2 for any prime p. Thus, it follows from [Theorem 2.10, [2]] that the zero-divisor graph $\Gamma(R)$ is not complete. This implies that $\exists z, w \in Z(R)$ such that $zw \neq 0$, and hence, we have that $(Z(R))^2 \neq \{0\}$. Thus, by Theorem 1, $\Gamma_D(R)$ is connected. \Box

Next, we consider the completeness of $\Gamma_D(R)$. It is seen that $\Gamma_D(\mathbb{Z}_6)$ is complete but $\Gamma_D(\mathbb{Z}_8)$ is not (cf. Figure 1 and Figure 2). It is interesting to observe that $Ann(Z(\mathbb{Z}_6)) = \{\overline{0}\}$ and $Ann(Z(\mathbb{Z}_8)) \neq \{\overline{0}\}$. We show in the next result that $Ann(Z(R) = \{0\}$ is indeed a necessary and sufficient condition for $\Gamma_D(R)$ to be complete.

Theorem 3. Let R be a finite commutative unital ring R. Then $\Gamma_D(R)$ is complete if and only if $Ann(Z(R)) = \{0\}$.

Proof. Let $Ann(Z(R)) = \{0\}$. Then if $z \in Z(R)^*$, $\exists z_1 \in Z(R)^*$ such that $zz_1 \neq 0$. Since $1(zz_1) = z(z_1)$, we have that $1 \leftrightarrow z$ in $\Gamma_D(R)$. It then follows by Lemma 3 that $u \leftrightarrow z$ for every $u \in U(R)$. As z was arbitrary, it follows that $u_2 \leftrightarrow z_2$ for any $u_2 \in U(R), z_2 \in Z(R)^*$. Since $R^* = U(R) \cup Z(R)^*$, this together with Lemma 1 implies that $\Gamma_D(R)$ is complete.

Conversely, let $\Gamma_D(R)$ be complete. Let $z \in Z(R)^*$. Clearly, $z \leftrightarrow u$ for all $u \in U(R)$. By Lemma 2, it then follows that $zy \neq 0$ for some $y \in Z(R)$. This shows that $z \notin Ann(Z(R))$ and hence, we have that $Ann(Z(R)) = \{0\}$.

Figure 2. $\Gamma_D(\mathbb{Z}_8)$

Corollary 2. Let $n \in \mathbb{N} - \{1, 2\}$. Then $\Gamma_D(\mathbb{Z}_n)$ is complete if and only if $n \neq p^m$ for any prime p and $m \in \mathbb{N}$.

Proof. Let $\Gamma_D(\mathbb{Z}_n)$ be complete. If possible, let $n = p^m$ for some prime p and $m \in \mathbb{N}$. By Corollary 1 and Figure 1, we then have that m > 2. So $Ann(Z(\mathbb{Z}_n)) \neq \{\overline{0}\}$, which contradicts the completeness of $\Gamma_D(\mathbb{Z}_n)$ (cf. Theorem 3). Hence, $n \neq p^m$ for any prime p and $m \in \mathbb{N}$. Conversely, let $n \neq p^m$ for any prime p and $m \in \mathbb{N}$. Then $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ for $k(\geq 2)$ distinct primes p_i 's. Consider any non-zero zero-divisor zin \mathbb{Z}_n . Clearly, $z = \overline{p_1^{r_1-s_1} p_2^{r_2-s_2} \cdots p_k^{r_k-s_k}}$, where $s_i \geq 0$ for $i = 1, 2, \ldots, k$, and $s_j > 0$ for some $j \in \{1, 2, \ldots, k\}$. Since $z\overline{p_t} \neq \overline{0}$ for any $t \neq j$, we have that $z \notin Ann(Z(\mathbb{Z}_n))$. This shows that $Ann(Z(\mathbb{Z}_n)) = \{\overline{0}\}$. Hence, by Theorem 3, $\Gamma_D(\mathbb{Z}_n)$ is complete. \Box

Theorem 4. Let R be a finite commutative unital ring.

(i) If R is not a local ring, then $\Gamma_D(R)$ is complete.

(ii) If all the zero-divisors of R are nilpotent of order 2, then $\Gamma_D(R)$ is complete if and only if R is not local.

Proof. (i) Let R be a non-local ring. First, let $R \cong \mathbb{Z}_2 \times F$ for some finite field F. Then any element z of $Z(R)^*$ can be expressed either as $(\overline{1}, 0_F)$ or in the form $(\overline{0}, a)$ for some $a \in F^*$. As $z^2 \neq 0$, it follows that $Ann(Z(R)) = \{0\}$. Hence, $\Gamma_D(R)$ is complete by Theorem 3. Next, let $R \not\cong \mathbb{Z}_2 \times F$, for any finite field F. Since R is not local, we have from [Corollary 2.7, [2]] that there is no vertex in the zero-divisor graph $\Gamma(R)$ which is adjacent to every other vertex. This shows that $Ann(Z(R)) = \{0\}$, and so, $\Gamma_D(R)$ is complete by Theorem 3.

(ii) If R is not local, then $\Gamma_D(R)$ is complete by part (i). Conversely, let $\Gamma_D(R)$ be complete. So $Ann(Z(R)) = \{0\}$ by Theorem 3. Since all elements of $Z(R)^*$ are

nilpotent of order 2, we have that $Ann(Z(R)) = \{0\}$ if and only if there is no vertex in the zero-divisor graph $\Gamma(R)$ which is adjacent to all other vertices. It then follows from [Corollary 2.7, [2]], that R is not local. This completes the proof.

We now show that apart from $Z(R)^*$ and U(R), there is another important subset of R which also induces a clique in $\Gamma_D(R)$.

Lemma 4. Let R be a finite commutative unital ring. Then R - Ann(Z(R)) induces a clique in $\Gamma_D(R)$.

Proof. By Lemma 1, both U(R) and $Z(R)^*$ induce cliques in $\Gamma_D(R)$. If $a \in Z(R) - Ann(Z(R))$, then $az \neq 0$ for some $z \in Z(R)^*$. So, by Lemma 2, $a \leftrightarrow u$ for any $u \in U(R)$. Since $U(R) \cup (Z(R) - Ann(Z(R))) = R - Ann(Z(R))$, this shows that R - Ann(Z(R)) induces a clique in $\Gamma_D(R)$.

The above result helps us in determining the chromatic number of $\Gamma_D(R)$.

Theorem 5. Let R be a finite commutative unital ring. Then $\chi(\Gamma_D(R)) = \omega(\Gamma_D(R)) = |R - Ann(Z(R))|.$

Proof. Since R is a finite commutative unital ring, it can be expressed in the form $R_1 \times R_2 \times \cdots \times R_k$, where the R_i 's local rings and $k \in \mathbb{N}$. If k = 1, then R is local and hence, $|U(R)| > |Z(R)| \ge |Ann(Z(R))|$. Again, if $k \ge 2$, then R is not local and $Ann(Z(R)) = \{(0, 0, 0, \dots, 0)\}$. So $|U(R)| = |U(R_1) \times U(R_2) \times \dots \times U(R_k)| \ge 0$ |Ann(Z(R))| in this case as well. By Lemma 1, $Z(R)^*$ induces a clique in $\Gamma_D(R)$. Let $(Ann(Z(R)))^* = \{z_1, z_2, \dots, z_m\}$ and $Z(R)^* = \{z_1, z_2, \dots, z_m, z_{m+1}, \dots, z_k\}.$ We assign the colours c_1, c_2, \ldots, c_k to the vertices z_1, z_2, \ldots, z_k , respectively. Let $U(R) = \{u_1, u_2, \ldots, u_m, u_{m+1}, \ldots, u_r\}$. By Lemma 2, $z_i \not\leftrightarrow u_s$ for any unit u_s and for $j = 1, 2, \ldots, m$. So one can assign the colours c_1, c_2, \ldots, c_m to the vertices u_1u_2, \ldots, u_m , respectively. Again, by Lemma 2, $z_j \leftrightarrow u_s$ for any unit u_s and for $j = m + 1, m + 2, \ldots, k$. So one can assign the colours $c_{k+1}, c_{k+2}, \ldots, c_{k+r-m}$ to the remaining vertices $u_{m+1}, u_{m+2}, \ldots, u_r$. This shows that $\chi(\Gamma_D(R)) \leq k + 1$ r-m = |R-Ann(Z(R))|. By Lemma 4, $\omega(\Gamma_D(R)) \geq |R-Ann(Z(R))|$. So $\chi(\Gamma_D(R)) \geq \omega(\Gamma_D(R)) \geq |R - Ann(Z(R))|$. Combining these results, we have that $\chi(\Gamma_D(R)) = \omega(\Gamma_D(R)) = |R - Ann(Z(R))|.$

Corollary 3.

$$\chi(\Gamma_D(\mathbb{Z}_n)) = \begin{cases} n-p & \text{if } n=p^m \text{ for some prime } p \text{ and } m>2\\ n-1 & \text{otherwise }. \end{cases}$$

Proof. If $n = p^m$ for some prime p and m > 2, then $|Ann(Z(\mathbb{Z}_n))| = p$. Next, let $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, where $k \ge 2$ and the p_i 's are distinct primes. Then $\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \cdots \times \mathbb{Z}_{p_k^{r_k}}$ and hence, $Ann(Z(\mathbb{Z}_n)) = \{\overline{0}\}$. So the result follows from Theorem 5.

3. $\Gamma_D(R)$ as a line graph of some graph G

In this section, we characterize those commutative unital rings R for which the graph $\Gamma_D(R)$ is realizable as the line graph of some graph G.

Definition 2. [12] Let G be a graph. Then the line graph of G is the graph L(G) whose vertex set consists of the edges of G, and two vertices in L(G) are adjacent if the corresponding edges in G have a common end-point.

Theorem 6. The graph $\Gamma_D(R)$ is a line graph of some graph G if and only if one of the following holds. (i) $Ann(Z(R)) = \{0\}$, (ii) |Ann(Z(R))| = 2 and |Z(R) - Ann(Z(R))| = 2, (iii) $|Ann(Z(R))| \ge 2$ and $|Z(R) - Ann(Z(R))| \le 1$.

Proof. If one of the said conditions holds, then $\Gamma_D(R)$ is a line graph as shown below.

Case 1. Assume $Ann(Z(R)) = \{0\}.$

Then, by Theorem 3, $\Gamma_D(R) \cong K_{|R|-1} = L(K_{1,|R|-1}).$

Case 2. Suppose that |Ann(Z(R))| = |Z(R) - Ann(Z(R))| = 2.

Clearly, $|Z(R)^*| = 3$ and the zero-divisor graph $\Gamma(R)$ is not complete. It then follows from a list given in [14] that R is isomorphic to one of the rings $\mathbb{Z}_8, \mathbb{Z}_2[x]/(x^3), \mathbb{Z}_4[x]/(2x, x^2 - 2)$. For each of the said rings, $\Gamma_D(R) = G_1^* = L(G_2^*)$, where G_1^* and G_2^* are shown in Figure 3, respectively.

Figure 3. The graphs G_1^* and G_2^*

Case 3. Assume that $|Ann(Z(R))| \ge 2$ and $|Z(R) - Ann(Z(R))| \le 1$.

Let |U(R)| = m and $|Z(R)^*| = n$. First, let Z(R) = Ann(Z(R)). Then $(Z(R))^2 = \{0\}$. In this case, $\Gamma_D(R) \cong K_m + K_n \cong L(K_{1,n} + K_{1,m})$. Next, let |Z(R) - Ann(Z(R))| = 1. Then $\Gamma_D(R)$ is isomorphic to $\overline{K_1 + K_{n-1,m}}$, which is the line graph of the graph G_3^* shown in the Figure 4.

Conversely, let $\Gamma_D(R)$ be the line graph of some graph G. If possible, let the ring R satisfy none of the conditions (i)-(iii). Then we have two possibilities as shown below. **Case 1.** Suppose that $|Z(R) - Ann(Z(R))| \ge 3$ and $|Ann(Z(R))| \ge 2$.

We consider a vertex subset $V_1 = \{z_1, z_2, z_3, z, 1\}$, where $z \in Ann(Z(R))^*$, and

 $z_1, z_2, z_3 \in Z(R) - Ann(Z(R))$. The subgraph of $\Gamma_D(R)$ induced by V_1 is isomorphic to $K_5 - e$ (cf. Figure 5), which is a forbidden subgraph for a line graph [Theorem 1,[15]]. So we arrive at a contradiction.

Figure 4. The graph G_3^*

Case 2. Let $|Ann(Z(R))| \ge 3$ and |Z(R) - Ann(Z(R))| = 2.

Here we consider a vertex subset $V_2 = \{z_1, z_2, z_3, z_4, u_1, u_2\}$, where $z_1, z_2 \in Ann(Z(R))^*, z_3, z_4 \in Z(R) - Ann(Z(R))$ and $u_1, u_2 \in U(R)$. In $\Gamma_D(R), V_2$ induces a subgraph isomorphic to G_4 (cf. Figure 5), which is a forbidden subgraph for a line graph (cf. [Theorem 1, [15]]). So we again reach a contradiction.

Figure 5. Graphs G_4 and $K_5 - e$

Thus, $\Gamma_D(R)$ is a line graph if and only if one of the conditions (i)-(iii) is satisfied. \Box

Corollary 4. $\Gamma_D(\mathbb{Z}_n)$ is a line graph of some graph G if and only if n = 8 or $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, where $k \ge 2$, p_i 's are distinct primes and $r_i \ge 1$ $\forall i = 1, 2, \ldots, k$.

Proof. Since $|Ann(\mathbb{Z}_8)| = 2$ and $|Z(\mathbb{Z}_8) - Ann(\mathbb{Z}_8)| = 2$, it follows by Theorem 6 that $\Gamma_D(\mathbb{Z}_8)$ is a line graph. Next, let $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ for $k \geq 2$ distinct primes p_i 's, where $r_t \geq 1$ for $t = 1, 2, \ldots, k$. Then $Ann(Z(\mathbb{Z}_n)) = \{0\}$ and so, $\Gamma_D(\mathbb{Z}_n)$ is a line graph. For all other values of n, it is easy to show that \mathbb{Z}_n satisfies none of the three conditions mentioned in Theorem 6 and hence $\Gamma_D(R)$ is not a line graph for those values of n. This completes the proof.

Acknowledgement: The authors are sincerely grateful to the learned referee(s) for suggestions and remarks.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] D.D. Anderson and M. Naseer, *Beck's coloring of a commutative ring*, J. Algebra 159 (1993), no. 2, 500–514. https://doi.org/10.1006/jabr.1993.1171.
- D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447. https://doi.org/10.1006/jabr.1998.7840.
- [3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. https://doi.org/10.1016/0021-8693(88)90202-5.
- [4] G. Bini and F. Flamini, *Finite Commutative Rings and Their Applications*, vol. 680, Springer Science & Business Media, New York, 2002.
- [5] B. Biswas, S. Kar, M.K. Sen, and T.K. Dutta, A generalization of co-maximal graph of commutative rings, Discrete Math. Algorithms Appl. 11 (2019), no. 1, Article ID: 1950013.

https://doi.org/10.1142/S1793830919500137.

- [6] B. Biswas, R. Sen Gupta, M.K. Sen, and S. Kar, On the connectedness of square element graphs over arbitrary rings, Southeast Asian Bulletin of Mathematics 43 (2019), no. 2, 153–164.
- [7] _____, Some properties of square element graphs over semigroups, AKCE Int.
 J. Graphs Comb. 17 (2020), no. 1, 118–130. https://doi.org/10.1016/j.akcej.2019.02.001.
- [8] H.J. Chiang-Hsieh, N.O. Smith, and H.J. Wang, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (2007), no. 1, 1–31.
- [9] J.A. Gallian, Contemporary Abstract Algebra, Houghton Mifflin, Boston, 2002.
- [10] M.J. González, On distinguishing local finite rings from finite rings only by counting elements and zero divisors, Eur. J. Pure Appl. Math. 7 (2014), no. 1, 109–113.
- [11] S.B. Nam, Finite local rings of order ≤ 16 with nonzero Jacobson radical, Korean J. Math. 21 (2013), no. 1, 23–28. https://doi.org/10.11568/kjm.2013.21.1.23.
- [12] D.K. Ray-Chaudhuri, Characterization of line graphs, J. Combin. Theory 3 (1967), no. 3, 201–214. https://doi.org/10.1016/S0021-9800(67)80068-1.
- [13] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commutative Rings 1 (2002), no. 4, 203–211.
- [14] _____, On zero-divisor graphs of small finite commutative rings, Discrete Math.

307 (2007), no. 9-10, 1155–1166.

https://doi.org/10.1016/j.disc.2006.07.025.

- [15] L. Šoltés, Forbidden induced subgraphs for line graphs, Discrete Math. 132 (1994), no. 1-3, 391–394. https://doi.org/10.1016/0012-365X(92)00577-E.
- [16] S. Visweswaran and A. Parmar, Some results on the complement of a new graph associated to a commutative ring, Commun. Comb. Optim. 2 (2017), no. 2, 119– 138.

https://doi.org/10.22049/cco.2017.25908.1053.

[17] D.B. West, Introduction to Graph Theory, Prentice Hall of India, New Delhi, 2003.

Appendix: All zero-divisor associate graphs of at most 15 vertices

We here give the complete list of graphs realizable as $\Gamma_D(R)$ with number of vertices at most 15. For this, we need to consider the local (i.e., those having a unique maximal ideal) as well as non-local rings of order at most 16 (since $\Gamma_D(R)$ has |R| - 1 vertices). Several lists given in [8, 10, 11, 14] help us list all such commutative unital rings, following some routine calculations. In this regard, the following result particularly helps in the characterization of the aforementioned local rings.

Theorem 7. Let (R, M) be a finite commutative local ring with 1 and with unique maximal ideal M. Then $|R| = p^{nr}$ and $|J(R)| = |M| = |Z(R)| = p^{(n-1)r}$ for some prime p and $n, r \in \mathbb{Z}$.

Proof. Clearly, M = Z(R) = J(R). This shows that Z(R) forms an additive group. So, by [Proposition 1, [10]], $|R| = p^{nr}$ and $|J(R)| = |M| = |Z(R)| = p^{(n-1)r}$ for some prime p and $n, r \in \mathbb{Z}$.

The corresponding zero-divisor associate graphs having at most 16 vertices are given in the following tables given in this appendix.

Figure 6. The graph G_5

			The Graph	
No. of	The Ring R	$ (Z(R))^* $	$\Gamma_D(R)$	Planarity
Vertices			` `	-
1	\mathbb{Z}_2	0	K_1	planar
2	\mathbb{Z}_3	0	$2K_1$	planar
3	$\mathbb{Z}_4, \mathbb{Z}_2[x]/(x^2)$	1	$K_1 + K_2$	planar
3	\mathbb{F}_4	0	$3K_1$	planar
3	$\mathbb{Z}_2 imes \mathbb{Z}_2$	2	K_3	planar
4	\mathbb{Z}_5	0	$4K_1$	planar
5	\mathbb{Z}_6	3	K_5	not planar
7	\mathbb{Z}_7	0	$7K_1$	planar
			G_5 (cf.	
7	$\mathbb{Z}_8, \mathbb{Z}_2[x]/(x^3), \mathbb{Z}_4[x]/(2x, x^2 - 2)$	3	Figure 6)	not planar
7	\mathbb{F}_8	0	$7K_1$	planar
7	$\mathbb{Z}_2[x,y]/(x,y)^2, \mathbb{Z}_4[x]/(2,x)^2$	3	$K_3 + K_4$	planar
7	$\mathbb{Z}_2 \times \mathbb{F}_4$	4	K_7	not planar
7	$\mathbb{Z}_2 imes \mathbb{Z}_4, \mathbb{Z}_2 imes \mathbb{Z}_2[x]/(x^2)$	5	K_7	not planar
7	$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$	6	K_7	not planar
8	$\mathbb{Z}_3 imes \mathbb{Z}_3$	4	K_8	not planar
8	$\mathbb{Z}_3[x]/(x^2), \mathbb{Z}_9$	2	$K_6 + K_2$	not planar
8	\mathbb{F}_9	0	$8K_1$	planar
9	$\mathbb{Z}_2 \times \mathbb{Z}_5$	5	K_9	not planar
10	\mathbb{Z}_{11}	0	$10K_{1}$	planar
11	$\mathbb{Z}_3 imes \mathbb{F}_4$	5	K_{11}	not planar
11	$\mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_3 \times \mathbb{Z}_2[x]/(x^2)$	7	K_{11}	not planar
11	$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$	9	K_{11}	not planar
12	\mathbb{Z}_{13}	0	$12K_1$	planar
13	$\mathbb{Z}_2 imes \mathbb{Z}_7$	7	K_{13}	not planar
14	$\mathbb{Z}_3 \times \mathbb{Z}_5$	6	K_{14}	not planar
15	\mathbb{F}_{16}	0	$15K_{1}$	planar
	$\mathbb{Z}_{2}[x]/(x^{4}), \mathbb{Z}_{16}, \mathbb{Z}_{4}[x]/(2+x^{2}), \mathbb{Z}_{4}[x]/(x^{3}-2, 2x^{2}, 2x),$			
15	$\mathbb{Z}_4[x]/(x^2+2x)$	7	$\overline{K_{1,8} + 6K_1}$	not planar
	$\mathbb{Z}_{8}[x]/(2x, x^{2}+4), \mathbb{Z}_{4}[x]/(x^{2}), \mathbb{Z}_{4}[x]/(x^{3}-x^{2}-2, 2x^{2}, 2x),$			
15	$\mathbb{Z}_2[x,y]/(x^2,y^2-xy)$	7	$\overline{K_{1,8} + 6K_1}$	not planar
	$\mathbb{Z}_{4}[x,y]/(x^{2},y^{2}-xy,xy-2,2x,2y), \mathbb{Z}_{4}[x,y]/(x^{2},y^{2},xy-xy)$			
15	$(2, 2x, 2y), \mathbb{Z}_2[x, y]/(x^2, y^2)$	7	$\overline{K_{1,8} + 6K_1}$	not planar
15	$\mathbb{Z}_4[x]/(x^2+3x)$	7	K_{15}	not planar
			$\overline{G_5}$ (cf.	
15	$\mathbb{Z}_8[x]/(2x,x^2)\mathbb{Z}_4[x]/(x^3,2x^2,2x), \mathbb{Z}_2[x,y]/(x^3,xy,y^2)$	7	Figure 6)	not planar
15	$\mathbb{Z}_2[x,y,z]/(x,y,z)^2, \mathbb{Z}_4[x,y]/(x^2,y^2,xy,2x,2y)$	7	$K_7 + K_8$	not planar
15	$\mathbb{F}_4[x]/(x^2), \mathbb{Z}_4[x]/(x^2+x+1)$	3	$K_3 + K_{12}$	not planar
15	$\mathbb{F}_4 imes \mathbb{F}_4$	6	K_{15}	not planar
15	$\mathbb{Z}_2 imes \mathbb{F}_8$	8	K_{15}	not planar
15	$\mathbb{Z}_4 imes \mathbb{F}_4, \mathbb{Z}_2[x]/(x^2) imes \mathbb{F}_4$	9	K_{15}	not planar
15	$\mathbb{Z}_2 \times \mathbb{Z}_8, \mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2), \mathbb{Z}_2 \times \mathbb{Z}_4[x]/(2x, x^2 - 2)$	11	K_{15}	not planar
15	$\mathbb{Z}_2 \times \mathbb{Z}_2[x,y]/(x,y)^2, \mathbb{Z}_2 \times \mathbb{Z}_4[x]/(2,x)^2$	11	K_{15}	not planar
15	$\mathbb{Z}_4 \times \mathbb{Z}_4, \mathbb{Z}_4 \times \mathbb{Z}_2[x]/(x^2), \mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_2[x]/(x^2)$	11	$K_{1,4} + 10K$	not planar
15	$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{F}_4$	12	K_{15}	not planar
15	$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_4, \mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2[x]/(x^2)$	13	K_{15}	not planar
15	$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$	14	K_{15}	not planar