[1] S.K. Ayyaswamy, B. Krishnakumari, C. Natarajan, and Y.B. Venkatakrishnan, Bounds on the hop domination number of a tree, Proceedings Math. Sci. 125 (2015), 449–455.
https://doi.org/10.1007/s12044-015-0251-6
[2] S.K. Ayyaswamy, C. Natarajan, and Y.B. Venkatakrishnan, Hop domination in graphs, Manuscript (2015).
[3] Y. Caro, A. Lev, and Y. Roditty, Some results in step domination of graphs, Ars Combin. 68 (2003), 105–114.
[5] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, p. 365–409.
[6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Comb. Comput. 115 (2020), 141–171.
[8] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, p. 273–307.
[11] T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[16] M.F. Jalalvand and N. Jafari Rad, On the complexity of $k$-step and $k$-hop dominating sets in graphs, Math. Montisnigri 40 (2017), 36–41.
[17] D.S. Johnson and M.R. Garey, Computers and intractability: A guide to the theory of NP-completeness, Freeman, 1979.
[18] R.M. Karp, Reducibility Among Combinatorial Problems, Springer, 2010.
[21] E. Shabani, N. Jafari Rad, and A. Poureidi, Graphs with large hop Roman domination number, Computer Sci. J. Moldova 79 (2019), no. 1, 3–22.
[22] E. Shabani, N. Jafari Rad, A. Poureidi, and A. Alhevaz, Hop Roman domination in graphs, Manuscript.
[23] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999), no. 6, 136–138.