Commuting graph of an aperiodic Brandt Semigroup

Document Type : Original paper

Authors

1 Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani-333031, India

2 School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India

Abstract

The commuting graph of a finite non-commutative semigroup S, denoted by Δ(S), is the simple graph whose vertices are the non-central elements of S and two distinct vertices x,y are adjacent if xy=yx. In this paper, we study the commuting graph of an important class of inverse semigroups viz. Brandt semigroup Bn. In this connection, we obtain the automorphism group Aut(Δ(Bn)) and the endomorphism monoid End(Δ(Bn)) of Δ(Bn). We show that Aut(Δ(Bn))Sn×Z2, where Sn is the symmetric group of degree n and Z2 is the additive group of integers modulo 2. Further, for n4, we prove that End(Δ(Bn))=Aut(Δ(Bn)). Moreover,  we provide the vertex connectivity and edge connectivity of Δ(Bn). This paper provides a partial answer to a question posed in \cite{a.Araujo2011} and so we ascertained  a class of inverse semigroups whose commuting graph is Hamiltonian.

Keywords

Main Subjects


[1] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optim. 1 (2016), no. 2, 117–135.  https://doi.org/10.22049/cco.2016.13555
[2] J. Araújo, W. Bentz, and K. Janusz, The commuting graph of the symmetric inverse semigroup, Israel J. Math. 207 (2015), no. 1, 103–149.  https://doi.org/10.1007/s11856-015-1173-9
[3] J. Araújo, M. Kinyon, and J. Konieczny, Minimal paths in the commuting graphs of semigroups, European J. Combin. 32 (2011), no. 2, 178–197.  https://doi.org/10.1016/j.ejc.2010.09.004
[4] C. Bates, D. Bundy, S. Perkins, and P. Rowley, Commuting involution graphs for finite Coxeter groups, J. Group Theory 6 (2003), no. 4, 461–476.  https://doi.org/10.1515/jgth.2003.032
[5] C. Bates, D. Bundy, S. Perkins, and P. Rowley, Commuting involution graphs for symmetric groups, J. Algebra 266
(2003), no. 1, 133–153.  https://doi.org/10.1016/S0021-8693(03)00302-8
[6] T. Bauer and B. Greenfeld, Commuting graphs of boundedly generated semigroups, European J. Combin. 56 (2016), 40–45.  https://doi.org/10.1016/j.ejc.2016.02.009
[7] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier Publishing, New York, 1976.
[8] D. Bundy, The connectivity of commuting graphs, J. Combin. Theory Ser. A 113 (2006), no. 6, 995–1007.  https://doi.org/10.1016/j.jcta.2005.09.003
[9] P.J. Cameron, Graph homomorphisms, Combinatorics Study Group Notes (2006), Manuscript.
[10] I. Chakrabarty and J.V. Kureethara, A survey on the intersection graphs of ideals of rings, Commun. Comb. Optim. 7 (2022), no. 2, 121–167.  https://doi.org/10.22049/cco.2021.26990.1176
[11] M. Ciric and S. Bogdanovic, The five-element Brandt semigroup as a forbidden divisor, Semigroup Forum 61 (2000), no. 3, 363–372.  https://doi.org/10.1007/PL00006035
[12] S. Dalal, Graphs associated with groups and semigroups, Ph.D. thesis, BITS Pilani, Pilani, 2021.
[13] S. Dalal and J. Kumar, Chromatic number of the cyclic graph of infinite semigroup, Graphs Combin. 36 (2020), no. 1, 109–113.  https://doi.org/10.1007/s00373-019-02120-4
[14] N.D. Gilbert and M. Samman, Endomorphism seminear-rings of Brandt semigroups, Comm. Algebra 38 (2010), no. 11, 4028–4041.  https://doi.org/10.1080/00927870903286892
[15] Y. Hao, X. Gao, and Y. Luo, On the Cayley graphs of Brandt semigroups, Comm. Algebra 39 (2011), no. 8, 2874–2883. https://doi.org/10.1080/00927872.2011.568028
[16] P. Hell and J. Nešetřil, The core of a graph, Discrete Math. 109 (1992), no. 1-3, 117–126.  https://doi.org/10.1016/0012-365X(92)90282-K
[17] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, Oxford, 1995.
[18] J.M. Howie and M.I.M. Ribeiro, Rank properties in finite semigroups, Comm. Algebra 27 (1999), no. 11, 5333–5347. https://doi.org/10.1080/00927879908826758
[19] J.M. Howie and M.I.M. Ribeiro, Rank properties in finite semigroups II: The small rank and the large rank, Southeast Asian Bull. Math. 24 (2000), no. 2, 231–237. https://doi.org/10.1007/s10012-000-0231-2
[20] A. Iranmanesh and A. Jafarzadeh, On the commuting graph associated with the symmetric and alternating groups, J. Algebra .Appl. 7 (2008), no. 1, 129–146. https://doi.org/10.1142/S0219498808002710
[21] M. Jackson and M. Volkov, Undecidable problems for completely 0-simple semigroups, J. Pure Appl. Algebra 213 (2009), no. 10, 1961–1978.  https://doi.org/10.1016/j.jpaa.2009.02.011
[22] K. Kátai-Urbán and C. Szabó, Free spectrum of the variety generated by the five element combinatorial Brandt semigroup, 73 (2006), no. 2, 253–260.  https://doi.org/10.1007/s00233-006-0615-4
[23] B. Khosravi and B. Khosravi, A characterization of Cayley graphs of Brandt semigroups, Bull. Malays. Math. Sci. Soc. 35 (2012), no. 2, 399–410.
[24] A. Kumar, L. Selvaganesh, P.J. Cameron, and T.T. Chelvam, Recent developments on the power graph of finite groups–a survey, AKCE Int. J. Graphs Comb. 18 (2021), no. 2, 65–94.  https://doi.org/10.1080/09728600.2021.1953359
[25] J. Kumar, Affine near-semirings over Brandt semigroups, Ph.D. thesis, IIT Guwahati, Guwahati, 2014.
[26] J. Kumar, S. Dalal, and P. Pandey, On the structure of the commuting graph of Brandt semigroups, International Conference on Semigroups and Applications, Springer Proceedings in Mathematics & Statistics, 2019, pp. 95–105.
[27] S. Margolis, J. Rhodes, and P.V. Silva, On the subsemigroup complex of an aperiodic Brandt semigroup, 97 (2018), no. 1, 7–31.  https://doi.org/10.1007/s00233-018-9927-4
[28] J.D. Mitchell, Turán's graph theorem and maximum independent sets in Brandt semigroups, Semigroups and languages, World Sci. Publ., River Edge, NJ, 2004, pp. 151–162.
[29] F. Movahedi, The energy and edge energy of some Cayley graphs on the abelian group Zn4, Commun. Comb. Optim.9 (2024), no. 1, 119–130. https://dx.doi.org/10.22049/cco.2023.28642.1647.
[30] R.P. Panda, S. Dalal, and J. Kumar, On the enhanced power graph of a finite group, Comm. Algebra 49 (2021), no. 4, 1697–1716.  https://doi.org/10.1080/00927872.2020.1847289
[31] M.M. Sadar, Pseudo-amenability of Brandt semigroup algebras, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 413–419.  http://eudml.org/doc/33324
[32] M.M. Sadr, Morita equivalence of Brandt semigroup algebras, Int. J. Math. Math. Sci. 2012, Article ID 280636.  https://doi.org/10.1155/2012/280636
[33] Y. Segev, On finite homomorphic images of the multiplicative group of a division algebra, Annals Math. 149 (1999), no. 1, 219–251.  https://doi.org/10.2307/121024
[34] Y. Segev, The commuting graph of minimal nonsolvable groups, Geometriae Dedicata 88 (2001), no. 1, 55–66. http://dx.doi.org/10.1023/A:1013180005982
[35] Y. Segev and G.M. Seitz, Anisotropic groups of type an and the commuting graph of finite simple groups, Pacific J. Math. 202 (2002), no. 1, 125–225.  http://dx.doi.org/10.2140/pjm.2002.202.125
[36] D.B. West, Introduction to Graph Theory, Prentice hall Upper Saddle River, 2001.