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Abstract: The commuting graph of a finite non-commutative semigroup S, denoted

by ∆(S), is the simple graph whose vertices are the non-central elements of S and two

distinct vertices x, y are adjacent if xy = yx. In this paper, we study the commuting
graph of an important class of inverse semigroups viz. Brandt semigroup Bn. In this

connection, we obtain the automorphism group Aut(∆(Bn)) and the endomorphism

monoid End(∆(Bn)) of ∆(Bn). We show that Aut(∆(Bn)) ∼= Sn × Z2, where Sn is
the symmetric group of degree n and Z2 is the additive group of integers modulo 2.

Further, for n ≥ 4, we prove that End(∆(Bn)) =Aut(∆(Bn)). Moreover, we provide

the vertex connectivity and edge connectivity of ∆(Bn). This paper provides a partial
answer to a question posed in [3] and so we ascertained a class of inverse semigroups

whose commuting graph is Hamiltonian.
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1. Introduction

The investigation of algebraic graphs is one of the popular topic in algebraic graph

theory. Various graphs associated to groups, rings, and semigroups have been studied

extensively by several researchers (see [1, 10, 12, 13, 24, 29, 30]). Such study provides

the interplay between the property of algebraic structure and the graph theoretic

property of its associated graph. The commuting graph of a finite non-abelian group
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128 Commuting graph of an aperiodic Brandt Semigroup

G is a simple graph (undirected graph with no loops or repeated edges) whose vertices

are the non-central elements of G and two distinct vertices x, y are adjacent if xy =

yx. Commuting graphs of various groups have been studied by several authors (cf.

[4, 5, 8, 20]). Moreover, [33–35] use combinatorial parameters of certain commuting

graphs to establish long standing conjectures in the theory of division algebras. The

concept of commuting graph can be defined analogously for semigroups. Let S be a

finite non-commutative semigroup with centre Z(S) = {a ∈ S : ab = ba for all b ∈ S}.
The commuting graph of S, denoted by ∆(S), is the simple graph whose vertex set

is S − Z(S) and two distinct vertices a, b are adjacent if ab = ba. In 2011, Araújo

et al. [3] initiated the study of commuting graph on finite semigroups and calculated

the diameter of commuting graphs of various ideals of full transformation semigroup.

Also, for every natural number n ≥ 2, a finite semigroup whose commuting graph has

diameter n has been constructed in [3]. Further, various graph theoretic properties

(viz. clique number and diameter) of ∆(I(X)), where I(X) is the symmetric inverse

semigroup of partial injective transformations on a finite set X, have been studied in

[2]. In order to provide answers to few of the problems posed in [3], T. Bauer et al. [6]

have established a semigroup whose knit degree is 3. For a wider class of semigroups, it

was shown in [6], that the diameter of their commuting graphs is effectively bounded

by the rank of the semigroups. Further, the construction of monomial semigroups

with a bounded number of generators, whose commuting graphs have an arbitrary

clique number have been provided in [6]. Motivated with the work in [3] and the

questions posed in its Section 6, in this paper, we study various graph invariants of

the commuting graph associated with an important class of inverse semigroups. This

work leads to answer partially to some of the problems posed in [3]. Moreover, the

results obtained in this paper may be useful into the study of commuting graphs on

completely 0-simple inverse semigroups.

Let G be a finite group. For a natural number n, we write [n] = {1, 2, . . . , n}. Recall

that the Brandt semigroup, denoted by Bn(G), has underlying set ([n]×G× [n])∪{0}
and the binary operation ‘·’ on Bn(G) is defined as

(i, a, j) · (k, b, l) =

{
(i, ab, l) if j = k;

0 if j 6= k

and, for all α ∈ Bn(G), α · 0 = 0 · α = 0. Note that 0 is the (two sided) zero element

in Bn(G).

Theorem 1 ([17, Theorem 5.1.8]). A finite semigroup S is both completely 0-simple
and an inverse semigroup if and only if S is isomorphic to the semigroup Bn(G) for some
group G.

Since all completely 0-simple inverse semigroups are exhausted by Brandt semigroups,

their consideration seems interesting and useful in various aspects. Brandt semigroups

have been studied extensively by various authors, see [21, 31, 32] and the references
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therein. When G is the trivial group, the Brandt semigroup Bn({e}) is denoted by

Bn. Thus, the semigroup Bn can be described as the set ([n] × [n]) ∪ {0}, where 0

is the zero element and the product (i, j) · (k, l) = (i, l), if j = k and 0, otherwise.

Since Green’s H-class of Bn is trivial, it is also known as aperiodic Brandt semigroup.

As a Rees matrix semigroup [17], Bn is isomorphic to the Rees matrix semigroup

M0({1, . . . , n}, 1, {1, . . . , n}, In), where In is the n× n identity matrix. Brandt semi-

group Bn play an important role in inverse semigroup theory and arises in number of

different ways, see [11, 22] and the references therein. Endomorphism seminear-rings

on Bn have been classified by Gilbert and Samman [14]. Further, various aspects of

affine near-semirings generated by affine maps on Bn have been studied in [25]. The

combinatorial study of Bn have been related with theory of matroids and simplicial

complexes in [27]. Various ranks of Bn have been obtained in [18, 19, 28], where some

of the ranks of Bn were obtained by using graph theoretic properties of some graph

associated on Bn. Cayley graphs associated with Brandt semigroups have been stud-

ied in [15, 23]. Recently, various graph invariants of the commuting graph of Brandt

semigroup have been studied in [26].

In this paper, we have further investigated the commuting graph of Bn as follows. In

Section 2, we provide necessary background material and notations used throughout

the paper. In Section 3, the automorphism group as well as endomorphism monoid

of ∆(Bn) is described. In Section 4, we investigate the vertex connectivity and edge

connectivity of ∆(Bn).

2. Preliminaries

In this section, we recall necessary definitions, results and notations of graph theory

from [36]. A graph G is a pair G = (V,E), where V = V (G) and E = E(G) are the

set of vertices and edges of G, respectively. We say that two different vertices a, b are

adjacent , denoted by a ∼ b, if there is an edge between a and b. We are considering

simple graphs, i.e. undirected graphs with no loops or repeated edges. If a and b are

not adjacent, then we write a � b. The neighbourhood N(x) of a vertex x is the set all

vertices adjacent to x in G. Additionally, we denote N [x] = N(x) ∪ {x}. A subgraph

of a graph G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A walk λ in

G from the vertex u to the vertex w is a sequence of vertices u = v1, v2, · · · , vm = w

(m > 1) such that vi ∼ vi+1 for every i ∈ {1, 2, . . . ,m− 1}. If no edge is repeated in

λ, then it is called a trail in G. A trail whose initial and end vertices are identical is

called a closed trail. A walk is said to be a path if no vertex is repeated. The length

of a path is the number of edges it contains. If U ⊆ V (G), then the subgraph of G
induced by U is the graph G′ with vertex set U , and with two vertices adjacent in G′ if

and only if they are adjacent in G. A graph G is said to be connected if there is a path

between every pair of vertex. A graph G is said to be complete if any two distinct

vertices are adjacent. A path that begins and ends on the same vertex is called a

cycle. A cycle in a graph G that includes every vertex of G is called a Hamiltonian

cycle of G. If G contains a Hamiltonian cycle, then G is called a Hamiltonian graph.
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Also, recall that the degree of a vertex v is the number of edges incident to v and

it is denoted as deg(v). A clique of a graph G is a complete subgraph of G and the

number of vertices in a clique of maximum size is called the clique number of G and

it is denoted by ω(G). A vertex (edge) cut-set in a connected graph G is a set of

vertices (edges) whose deletion increases the number of connected components of G.

The vertex connectivity (edge connectivity) of a connected graph G is the minimum

size of a vertex (edge) cut-set and it is denoted by κ(G) (κ′(G)). For k ≥ 1, graph G
is k-connected if κ(G) ≥ k. It is well known that κ(G) ≤ κ′(G) ≤ δ(G).

The commuting graph of a finite semigroup S, denoted by ∆(S), is the simple graph

whose vertices are the non-central elements of S and two distinct vertices x, y are

adjacent if xy = yx. The following fundamental results are useful in the sequel.

Lemma 1 ([26, Lemma 3.1]). In the graph ∆(Bn), we have the following:

(i) N [(i, i)] = {(j, k) : j, k ∈ [n], j, k 6= i} ∪ {(i, i)}.

(ii) N [(i, j)] = {(i, l) : l ∈ [n], l 6= i, j} ∪ {(l, j) : l ∈ [n], l 6= i, j} ∪ {(k, l) : k, l ∈
[n], k 6= i, j and l 6= i, j} ∪ {(i, j)}, where i 6= j.

Remark 1. Two distinct vertices (i, j) and (k, i) are not adjacent in ∆(Bn).

Corollary 1. In the commuting graph ∆(Bn), the degree of idempotent vertices is (n−1)2

and the degree of non-idempotent vertices is n(n− 2).

Theorem 2 ([26, Lemma 3.2]). For n ≥ 3, the commuting graph ∆(Bn) Hamiltonian.

Notation: We denote K as the set of all cliques of ∆(Bn) having no idempotent

element and E as the set of non-zero idempotents of Bn.

Lemma 2 ([26, Lemma 3.4]). For K ∈ K, we have |K| ≤


n2

4
if n is even;

n2−1
4

if n is odd.

Corollary 2 ([26, Corollary 3.5]). For n ≥ 4, there exists K ∈ K such that

|K| =


n2

4
if n is even;

n2−1
4

if n is odd.

Lemma 3 ([26, Lemma 3.6]). For n ∈ {2, 3, 4}, the set E forms a clique of maximum
size. Moreover, in this case ω(∆(Bn)) = n.
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Theorem 3 ([26, Theorem 3.7]). For n > 4, the clique number of ∆(Bn) is given
below:

ω(∆(Bn)) =


n2

4
if n is even;

n2−1
4

if n is odd.

Lemma 4. For n > 4, let K be a clique of maximum size in ∆(Bn). Then all elements
of K are non-idempotent.

Proof. Suppose K is a clique of maximum size such that K contains m idempo-

tents viz. (i1, i1), (i2, i2), . . . , (im, im). Without loss of generality, we assume that

{i1, i2, . . . , im} = {n − m + 1, n − m + 2, . . . , n}. For 1 ≤ r ≤ m, K contains

(ir, ir) and no element of the form (x, ir) or (ir, x) (x ∈ [n]), x 6= ir is in K. Thus

K \ {(i1, i1), . . . , (im, im)} is a clique in ∆(Bn−m) which does not contain any idem-

potent. Clearly, |K \ {(i1, i1), . . . , (im, im)}| = ω(∆(Bn−m)). Then by Corollary 2

|K \ {(i1, i1), . . . , (im, im)}| =


(n−m)2

4 if n−m is even;

(n−m)2−1
4 if n−m is odd.

Thus,

|K| =

{
(n−m)2

4 +m if n−m is even;
(n−m)2−1

4 +m if n−m is odd.

Since n > 4 and for m > 0, one can observe that

|K| <

{
n2

4 if n is even;
n2−1

4 if n is odd;

a contradiction of the fact that K is a clique of maximum size (see Theorem 3).

Lemma 5. For n > 4 and (i, j) /∈ E, there exists a clique K of maximum size such that
(i, j) ∈ K.

Proof. Consider a partition A and B of a set [n] such that i ∈ A, j ∈ B and |A| = n
2

when n is even, otherwise |A| = n−1
2 . In view of Lemma 1 and Theorem 3, note that

A×B forms a clique of maximum size that contain the vertex (i, j).

Lemma 6. For n = 4, let K be any clique in ∆(Bn) of size 4. Then K is either E or
K = A×B, where A and B are disjoint subset of {1, 2, 3, 4} of size two.
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Proof. First note that K = {(1, 1), (2, 2), (3, 3), (4, 4)} is a clique in ∆(B4). Suppose

K ′ is a clique of maximum size. If K ′ does not contain an idempotent, then by Lemma

2, |K ′| = 4. Thus, K is also a clique of maximum size. On the other hand, we may now

assume that K contains an idempotent. Without loss of generality, let (4, 4) ∈ K ′.
Then K ′ \{(4, 4)} is a clique of maximum size in ∆(B3). Since {(1, 1), (2, 2), (3, 3)} is

the only clique in ∆(B3) of maximum size. Thus, K ′ \{(4, 4)} = {(1, 1), (2, 2), (3, 3)}.
Consequently, K ′ = {(1, 1), (2, 2), (3, 3), (4, 4)} = K. Hence, we have the result.

3. Algebraic properties of ∆(Bn)

In order to study algebraic aspects of the graph ∆(Bn), in this section we obtain

automorphism group (see Theorem 4) and endomorphism monoid (see Theorem 6) of

∆(Bn).

3.1. Automorphism group of ∆(Bn)

An automorphism of a graph G is a permutation f on V (G) with the property that,

for any vertices u and v, we have uf ∼ vf if and only if u ∼ v. The set Aut(G) of

all graph automorphisms of a graph G forms a group with respect to composition of

mappings. The symmetric group of degree n is denoted by Sn. For n = 1, the group

Aut(∆(Bn)) is trivial. For the remaining subsection, we assume n ≥ 2.

Lemma 7. Let x ∈ V (∆(Bn)) and f ∈ Aut(∆(Bn)). Then x is an idempotent if and
only if xf is an idempotent.

Proof. Since f is an automorphism, we have deg(x) =deg(xf). By Corollary 1, the

result holds.

Lemma 8. For f ∈ Aut(∆(Bn)) and i, j, k, k′ ∈ [n] such that (i, i)f = (k, k) and
(j, j)f = (k′, k′), we have either (i, j)f = (k, k′) or (i, j)f = (k′, k).

Proof. For i 6= j, suppose that (i, j)f = (x, y). Clearly, (i, j) � (i, i) so that

(x, y) = (i, j)f � (i, i)f = (k, k). Since (x, y) � (k, k), we get either x = k or y = k.

Similarly, for (i, j) � (j, j), we have either x = k′ or y = k′. Thus, by Lemma 7, we

have (x, y) = (k, k′) or (x, y) = (k′, k).

Lemma 9. For σ ∈ Sn, let φσ : V (∆(Bn)) → V (∆(Bn)) defined by (i, j)φσ = (iσ, jσ).
Then φσ ∈ Aut(∆(Bn)).

Proof. It is easy to verify that φσ is a permutation on V (∆(Bn)). Now we show

that φσ preserves adjacency. Let (i, j), (x, y) ∈ V (∆(Bn)) such that (i, j) ∼ (x, y).
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Now,

(i, j) ∼ (x, y)⇐⇒ x 6= j and y 6= i

⇐⇒ for σ ∈ Sn, we have xσ 6= jσ and yσ 6= iσ

⇐⇒ (iσ, jσ) ∼ (xσ, yσ)

⇐⇒ (i, j)φσ ∼ (x, y)φσ.

Hence, φσ ∈ Aut(∆(Bn)).

Lemma 10. Let α : V (∆(Bn)) → V (∆(Bn)) be a mapping defined by (i, j)α = (j, i).
Then α ∈ Aut(∆(Bn)).

Proof. It is straightforward to verify that α is a one-one and onto map on V (∆(Bn)).

Note that

(i, j) ∼ (x, y)⇐⇒ x 6= j and y 6= i

⇐⇒ (j, i) ∼ (y, x)

⇐⇒ (i, j)α ∼ (x, y)α.

Hence, α ∈ Aut(∆(Bn)).

Remark 2. For φσ and α, defined in Lemma 9 and 10, we have φσ ◦ α = α ◦ φσ.

Proposition 1. For each f ∈ Aut(∆(Bn)), we have either f = φσ or f = φσ ◦ α for
some σ ∈ Sn.

Proof. Since f ∈ Aut(∆(Bn)), by Lemma 7, note that there exists a permutation

σ : [n] → [n] such that iσ = j ⇐⇒ (i, i)f = (j, j), determined by f . Thus,

we have (i, i)f = (iσ, iσ) for all i ∈ [n]. Let j 6= i. Then by Lemma 8, we get

either (i, j)f = (iσ, jσ) or (i, j)f = (jσ, iσ). First, let (i, j)f = (iσ, jσ). Then for

every vertical and horizontal neighbour (x′, y′) of (i, j), we have (x′, y′)f = (x′σ, y′σ)

because (iσ, jσ) and (y′σ, x′σ) are not adjacent. Since every other vertex is connected

to (i, j) by vertical and horizontal neighbors, we have (x, y)f = (xσ, yσ) for all (x, y) ∈
V (∆(Bn)). Consequently, f = φσ. If (i, j)f = (jσ, iσ), then (i, j)(f ◦ α) = (iσ, jσ).

Thus, (x, y)(f ◦α) = (xσ, yσ) for all (x, y) ∈ V (∆(Bn)). Therefore, (x, y)f = (yσ, xσ),

and hence f = φσ ◦ α.

Theorem 4. For n ≥ 2, we have Aut(∆(Bn)) ∼= Sn × Z2. Moreover, |Aut(∆(Bn))| =
2(n!).
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Proof. In view of Lemmas 1, 9 and 10, note that the underlying set of the automor-

phism group of ∆(Bn) is

Aut(∆(Bn)) = {φσ : σ ∈ Sn} ∪ {φσ ◦ α : σ ∈ Sn},

where Sn is a symmetric group of degree n. Note that the groups Aut(∆(Bn)) and

Sn×Z2 are isomorphic under the assignment φσ 7→ (σ, 0̄) and φσ ◦α 7→ (σ, 1̄). Since,

all the elements in Aut(∆(Bn)) are distinct, we have |Aut(∆(Bn))| = 2(n!).

3.2. Endomorphism monoid of ∆(Bn)

A mapping f from a graph G to G′ is said to be a homomorphism if x ∼ y, then

xf ∼ yf for all x, y ∈ V (G). If G′ = G, then we say f is an endomorphism. Note

that the set End(G) of all endomorphisms on G forms a monoid with respect to the

composition of mappings. First we obtain the endomorphism monoid of ∆(Bn) for

n ∈ {2, 3}. The following remark is useful in the sequel.

Remark 3. Let f ∈ End(G) and K be a clique of maximum size in G. Then Kf is again
a clique of maximum size.

Lemma 11. End(∆(B2)) = {f : V (∆(B2)) → V (∆(B2)) : Ef = E}, where E =
{(1, 1), (2, 2)}.

Proof. For x, y ∈ V (∆(B2)), note that x ∼ y if and only if x, y belongs to E . Hence,

we have the result.

For σ ∈ S3, we define the mappings fσ and gσ on V (∆(B3)) by

• (i, i)
fσ7−→ (iσ, iσ), (1, 2)

fσ7−→ (1σ, 1σ), (1, 3)
fσ7−→ (3σ, 3σ), (2, 3)

fσ7−→
(2σ, 2σ), (2, 1)

fσ7−→ (1σ, 1σ), (3, 1)
fσ7−→ (3σ, 3σ), (3, 2)

fσ7−→ (2σ, 2σ), and

• (i, i)
gσ7−→ (iσ, iσ), (1, 2)

gσ7−→ (2σ, 2σ), (3, 2)
gσ7−→ (3σ, 3σ), (3, 1)

gσ7−→
(1σ, 1σ), (2, 1)

gσ7−→ (2σ, 2σ), (2, 3)
gσ7−→ (3σ, 3σ), (1, 3)

gσ7−→ (1σ, 1σ), respectively.

It is routine to verify that fσ, gσ ∈ End(∆(B3)).

Lemma 12. End(∆(B3)) = Aut(∆(B3)) ∪ {fσ : σ ∈ S3} ∪ {gσ : σ ∈ S3}, where fσ

and gσ are the endomorphisms on V (∆(B3)) as defined above.

Proof. Let ψ ∈ End(∆(B3)). By Figure 1, note that {(1, 1), (2, 2), (3, 3)} is the only

clique of maximum size in ∆(B3). Since the image of a clique of maximum size under

an endomorphism is again a clique of maximum size, we get (i, i)ψ is an idempotent

element for all i ∈ {1, 2, 3}. Also note that restriction of ψ to E = {(1, 1), (2, 2), (3, 3)}
is a bijective map from E to E . If (i, i)ψ = (j, j) for some j ∈ {1, 2, 3}, then define

σ : {1, 2, 3} → {1, 2, 3} by iσ = j. Consequently, σ ∈ S3. Suppose (i, j)ψ is an

idempotent element for some distinct i, j ∈ {1, 2, 3}. Without loss of generality,
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(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)
(2, 3)

(3, 1)

(3, 2)

(3, 3)

Figure 1. The commuting graph of B3

let i = 1 and j = 2. Since (1, 2) ∼ (3, 3) we have (1, 2)ψ ∼ (3, 3)ψ = (3σ, 3σ).

Consequently, (1, 2)ψ ∈ {(1σ, 1σ), (2σ, 2σ)}. If (1, 2)ψ = (1σ, 1σ), then ψ = fσ.

Otherwise, ψ = gσ. On the other hand, if (i, j)ψ is a non-idempotent for all i 6= j.

Let (i, j)ψ = (x, y), where x 6= y. For k 6= i, j, we have (x, y) = (i, j)ψ ∼ (k, k)ψ.

Thus, (i, j)ψ is either (iσ, jσ) or (jσ, iσ). By the similar argument used in Proposition

1, we have ψ ∈ Aut(∆(B3)).

Now, we obtain End(∆(Bn)) for n ≥ 4. We begin with few definitions and necessary

results. If G′ is a subgraph of G, then a homomorphism f : G → G′ such that xf = x

for all x ∈ G′ is called a retraction of G onto G′ and G′ is said to be a retract of G. A

subgraph G′ of G is said to be a core of G if and only if it admits no proper retracts

(cf. [16]). Let X ⊂ A, Y ⊆ B and f be any mapping from the set A to B such that

Xf ⊆ Y . We write the restriction map of f from X to Y as fX×Y i.e fX×Y : X → Y

such that xfX×Y = xf .

Proposition 2 ([9, Proposition 2.4]). A graph G is a core if and only if End(G) =
Aut(G).

Lemma 13. Let f be a retraction of ∆(B4). Then a non-idempotent element maps to a
non-idempotent element of B4 under f .

Proof. Let, if possible there exists a non-idempotent element (i, j) of B4 such that

(i, j)f is an idempotent element. In order to get a contradiction, first we show that

(a, b)f ∈ E = {(1, 1), (2, 2), (3, 3), (4, 4)} for all a 6= b ∈ {1, 2, 3, 4}. Without loss of

generality, we may assume that i = 1 and j = 2. In view of Remark 6 , any clique K

in ∆(B4) of maximum size is either K = E or K = A×B, where A and B are disjoint

subsets of {1, 2, 3, 4} of size two. Therefore, ∆(B4) has two cliques of maximum

size which contains (1, 2) viz. K1 = {1, 3} × {2, 4} and K2 = {1, 4} × {2, 3}. Note

that for disjoint subsets A and B of {1, 2, 3, 4}, the clique A × B does not contain

an idempotent element. Since (1, 2)f is an idempotent element and by Remark 3,

we have K1f = K2f = E . By using the other elements of (K1f ∪K2f) \ {(1, 2)f},
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in a similar manner, one can observe that the image of remaining non-idempotent

elements belongs to E . Thus, (a, b)f ∈ E for all a 6= b ∈ [n]. Now, we show that for

any two distinct x, y ∈ {1, 2, 3, 4}, (x, y)f is either (x, x) or (y, y). Since image of non-

idempotent element is an idempotent so that (x, y)f = (p, p) for some p ∈ {1, 2, 3, 4}.
Note that p ∈ {x, y}. Otherwise, (p, p) ∼ (x, y) implies (p, p) = (p, p)f ∼ (x, y)f =

(p, p); which is not possible. Now suppose (1, 2)f = (1, 1). Since (1, 2) ∼ (1, k) for

k 6= 1, 2, we get (1, 1) = (1, 2)f ∼ (1, k)f . Consequently, (1, k)f = (k, k). Similarly,

we get (2, k)f = (2, 2). Therefore, (2, 3)f = (2, 4)f = (2, 2). We get a contradiction

as (2, 4) ∼ (2, 3). Similarly, we get a contradiction when (1, 2)f = (2, 2). Hence, the

result hold.

Lemma 14. For n ≥ 5, let f ∈ End(∆(Bn)). Then a non-idempotent element maps to
a non-idempotent element of Bn under f .

Proof. Let (i, j) be a non-idempotent element of Bn. By Remark 5, there exists a

clique K of maximum size which contains (i, j). In view of Remarks 4 and 3, all the

elements of Kf are non-idempotent. Thus, (i, j)f is a non-idempotent element.

Proposition 3. For n ≥ 4, let G′ be a retract of ∆(Bn) such that (i, i) ∈ G′ for all
i ∈ [n]. Then G′ = ∆(Bn).

Proof. Since G′ is a retract of ∆(Bn), there exists a homomorphism f : ∆(Bn)→ G′
such that xf = x for all x ∈ V (G′). Let (i, j) be a non-idempotent element of

Bn. Then (i, j)f is a non-idempotent element of Bn (cf. Lemmas 13 and 14). Let

(i, j)f = (x, y), where x 6= y. For k ∈ [n] \ {i, j}, we have (i, j) ∼ (k, k). Since

(k, k) ∈ G′, we get (x, y) ∈ N [(k, k)]. By Lemma 1(i), x, y 6= k. Consequently,

(x, y) ∈ {(i, j), (j, i)}. Thus, either (i, j)f = (i, j) or (j, i). Now to prove G′ = ∆(Bn),

we show that f is an identity map. Since (i, i) ∈ G′, it is sufficient to prove that for

any i, j ∈ [n] such that i 6= j, we have (i, j)f = (i, j). Let if possible, (i, j)f = (j, i)

for some i 6= j. Then (j, i)f = (j, i). For p ∈ [n] \ {i, j}, note that (j, p)f = (j, p)

because if (j, p)f = (p, j), then (j, p) ∼ (j, i) implies (j, p)f = (p, j) � (j, i) = (j, i)f ;

a contradiction. Further, note that (i, p)f /∈ {(i, p), (p, i)} which is not possible. For

instance, if (i, p)f = (i, p) then (i, p) ∼ (i, j) gives (i, p)f ∼ (i, j)f . Consequently,

we get (i, p) ∼ (j, i); a contradiction. On the other hand, if (i, p)f = (p, i)f then

(i, p) ∼ (j, p) gives (i, p)f = (p, i) � (j, p) = (j, p)f ; a contradiction. Hence, f is an

identity map so that G′ = ∆(Bn).

To obtain the End(∆(Bn)), following lemmas will be useful.

Lemma 15. For n ≥ 4, let f be a retraction of ∆(Bn) onto G′. Then there exists a
clique K of maximum size in G′ such that K = A× B where A and B forms a partition of
[n]. Moreover,

(i) if n is even then |A| = |B| = n
2

, or
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(ii) if n is odd then either |A| = n−1
2
, |B| = n+1

2
or |A| = n+1

2
, |B| = n−1

2
.

Proof. Let f be a retraction on ∆(Bn). For n ≥ 4, in view of Corollary 2, Lemma

3 and Theorem 3, ∆(Bn) contains a clique K ′ of maximum size such that all the

elements of K ′ are non-idempotent. By Remark 3 and Lemmas 13, 14, K ′f is a

clique of maximum size and all of its elements are non-idempotents. Now consider

K ′f = K, by the proof of Lemma 2, we get K = A × B where A and B forms a

partition of [n] together with (i) or (ii).

In the following lemma, we provide the possible images of non-idempotent elements

of Bn under a retraction.

Lemma 16. Let f be a retraction of ∆(Bn) onto G′, where n ≥ 4. There exists a partition
{A,B} of [n] such that for any for p 6= q, we have (p, q)f ∈ {(t, p) : t ∈ A} ∪ {(q, t) : t ∈
B} ∪ {(p, q)}. Moreover,

(i) if p ∈ A, then (p, q)f 6= (t, p) for any t ∈ A.

(ii) if q ∈ B, then (p, q)f 6= (q, t) for any t ∈ B.

Proof. In view of Lemma 15, there exists a clique K = A × B of maximum size

in G′ for some partition {A,B} of [n]. Suppose (p, q)f = (x, y). Then, by Lemmas

13 and 14, we have x 6= y. If (p, q)f = (p, q) then there is nothing to prove. Now

let (p, q)f = (x, y) where (x, y) 6= (p, q). If x, y /∈ {p, q}, then (p, q) ∼ (x, y) gives

(p, q)f = (x, y)f = (x, y); a contradiction. Then either x ∈ {p, q} or y ∈ {p, q}.
If x = p, then clearly y /∈ {p, q}. Consequently, (p, q) ∼ (x, y) provides again a

contradiction. Therefore, x 6= p. Similarly, one can show that y 6= q. It follows that

(p, q)f = (x, y) where either x = q or y = p. Now observe that if y = p, then x ∈ A.

If possible, let x ∈ B. Then for α ∈ A \ {q}, (α, x)f = (α, x) as (α, x) ∈ A×B ⊆ G′.
Since x 6= p as x 6= y, we get (p, q) ∼ (α, x) so that (p, q)f = (x, p) ∼ (α, x) = (α, x)f ;

a contradiction of Remark 1. In a similar manner it is not difficult to observe if x = q,

then y ∈ B.

To prove addition part of the lemma, suppose p ∈ A and (p, q)f = (t, p) for some

t ∈ A. For r ∈ B such that r 6= q, we have (p, q) ∼ (p, r) and (p, r)f = (p, r)

as (p, r) ∈ K ⊆ G′. Consequently, we get (p, q)f = (t, p) ∼ (p, r) = (p, r)f ; a

contradiction of Remark 1. Thus, (p, q)f 6= (t, p). Using similar argument, observe

that for q ∈ B, (p, q)f 6= (q, t) for any t ∈ B. Thus, the result hold.

Theorem 5. For n = 4, we have End(∆(Bn)) = Aut(∆(Bn)).

Proof. In view of Proposition 2, we show that ∆(Bn) is a core. For that it is sufficient

to show ∆(Bn) admits no proper retract (cf. [16]). On contrary, suppose ∆(Bn)

admits a proper retract G′. Then there exists a homomorphism f : ∆(Bn) → G′
such that xf = x for all x ∈ G′. Since the set E = {(1, 1), (2, 2), (3, 3), (4, 4)} forms

a clique of maximum size as ω(∆(B4)) = 4 (cf. Lemma 3) so that Ef is a clique
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of size 4 (see Remark 3). By Remark 6, we have either Ef = E or Ef = A × B

where A,B ⊆ {1, 2, 3, 4} with |A| = |B| = 2. If Ef = E , then by Proposition

3, G′ = ∆(Bn); a contradiction. Thus, Ef = A × B. Let (1, 1)f = (i, j) where

i 6= j. Then (i, j)f = (i, j) as (i, j) ∈ G′. Note that either i = 1 or j = 1. If both

i, j 6= 1, then (i, j) ∼ (1, 1). Consequently, (1, 1)f ∼ (i, j)f which is not possible as

(i, j)f = (1, 1)f = (i, j). Without Loss of generality, we assume that i = 1 and j = 2.

Similarly, (2, 2)f ∈ {(2, k), (k, 2)} for some k 6= 1, 2. Since (2, 2)f ∼ (1, 2) = (1, 1)f

as (1, 1) ∼ (2, 2). If (2, 2)f = (2, k), then (2, k) ∼ (1, 2); a contradiction of Remark

1 so (2, 2)f = (k, 2) for some k 6= 1, 2. Without loss of generality, we suppose k = 3.

In the same way, we get (3, 3)f = (3, 4) and (4, 4)f = (1, 4). Therefore, we have

A = {1, 3} and B = {2, 4}. In view of Lemma 16, (2, 4)f ∈ {(1, 2), (3, 2), (2, 4)}.
Since (1, 1) ∼ (2, 4) so that (1, 1)f = (1, 2) ∼ (2, 4)f gives (2, 4)f = (3, 2). Similarly,

we get (2, 3)f = (3, 4). Again by Lemma 16, we have (1, 3)f ∈ {(3, 2), (3, 4), (1, 3)}.
For (1, 3) ∼ (2, 3) and (1, 3) ∼ (2, 4) we obtained (1, 3)f ∼ (3, 4) and (1, 3)f ∼ (3, 2).

Consequently, we get a contradiction of Remark 1.

Theorem 6. For n ≥ 5, we have End(∆(Bn)) = Aut(∆(Bn)).

Proof. In order to prove the result, we show that ∆(Bn) is a core (see Proposition

2). For that it is sufficient to show ∆(Bn) admits no proper retract (cf. [16]). On

contrary, suppose ∆(Bn) admits a proper retract G′. Then there exists an onto

homomorphism f : ∆(Bn) → G′ such that xf = x for all x ∈ G′. In view of Lemma

15, there exists a clique K = A×B where A and B forms a partition of [n]. Without

loss of generality, we may assume that A = {1, 2, . . . , t} and B = {t+ 1, t+ 2, . . . , n}
where t ∈ {n2 ,

n−1
2 , n+1

2 }. Consider the set

X = {i ∈ A \ {1} : (1, i)f = (1, i)} ∪ {1 : (2, 1)f = (2, 1)}.

The following claims will be useful in the sequel.

Claim 1. (i) For i ∈ X and r ∈ A \ {i}, we have (r, i)f = (r, i).

(ii) For i ∈ A \X and r ∈ A \ {i}, we have (r, i)f = (i, s) for some s ∈ B.

Proof of Claim (i) First, suppose that 1 /∈ X. Then i 6= 1 and so (1, i)f = (1, i).

Thus, the result holds for r = 1. We may now suppose that r ∈ A \ {1, i}. Then

by Lemma 16, we have either (r, i)f = (r, i) or (r, i)f = (i, s) where s ∈ B. If

(r, i)f = (i, s) for some s ∈ B, then (i, s) = (r, i)f ∼ (1, i)f = (1, i); a contradiction

to the Remark 1. Thus, (r, i)f = (r, i) for all r ∈ A\{i}. Now we assume that 1 ∈ X.

For i 6= 1, similar to the above, we obtain (r, i)f = (r, i) for all r ∈ A\{i}. Further, we

consider i = 1. Note that (2, 1)f = (2, 1). Therefore, the result holds for r = 2. Let

r ∈ A \ {1, 2}. In view of Lemma 16, we have either (r, 1)f = (r, 1) or (r, 1)f = (1, s)

where s ∈ B. Suppose (r, 1)f = (1, s) for some s ∈ B. Since (r, 1) ∼ (2, 1), we get
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(1, s) = (r, 1)f ∼ (2, 1)f = (2, 1) which is not possible. Hence, (r, i)f = (r, i) for all

r ∈ A \ {i}.

(ii) First, suppose that 1 /∈ X and let i ∈ A \ (X ∪ {1}). In view of Lemma 16, we

have either (1, i)f = (1, i) or (1, i)f = (i, s) for some s ∈ B. Note that (1, i)f 6= (1, i)

as i ∈ A \ X. It follows that (1, i)f = (i, s) for some s ∈ B. Thus, the result holds

for r = 1. If r ∈ A \ {1, i}, then we have either (r, i)f = (r, i) or (r, i)f = (i, s′)

where s′ ∈ B (cf. Lemma 16). Suppose (r, i)f = (r, i). Since (r, i) ∼ (1, i), it

implies that (r, i)f ∼ (1, i)f and so (r, i) ∼ (i, s); a contradiction of Remark 1. Thus,

(r, i)f = (i, s′) for some s′ ∈ B. Now consider i = 1 ∈ A\X and let r ∈ A\{1}. Then

(2, 1)f 6= (2, 1). By Lemma 16, we get (2, 1)f = (1, s) for some s ∈ B. Therefore, the

result holds for r = 2. For r ∈ A\{1, 2}, we get eiher (r, 1)f = (r, 1) or (r, 1)f = (1, z)

where z ∈ B (cf. Lemma 16). If (r, 1)f = (r, 1), then (r, 1) = (r, 1)f ∼ (2, 1)f = (1, s)

which is not possible. Thus, (r, 1)f = (1, s) for some s ∈ B. Further, we assume that

1 ∈ X. Note that i 6= 1 and so (1, i)f 6= (1, i). Again by Lemma 16, (1, i)f = (i, t)

for some t ∈ B. Thus, the result holds for r = 1. Let r ∈ A \ {1, i}. Then either

(r, i)f = (r, i) or (r, i)f = (i, s′) where s′ ∈ B (cf. Lemma 16). If (r, i)f = (r, i), then

(r, i) = (r, i)f ∼ (1, i)f = (i, t); a contradiction to Remark 1. This completes the

proof our claim.

In view of the set X, we have the following cases.

Case 1: Suppose |X| > |A \ X|. Then |X| ≥ 2 as n ≥ 5. In order to get a

contradiction of the fact that G′ is a proper retract of ∆(Bn), we prove that f is an

identity map in this case. First we show that each non-idempotent element of ∆(Bn)

maps to itself under f through the following claim.

Note: If n > 5, then |A| ≥ 3. For n = 5, we have either |A| = 2, |B| = 3 or |A| = 3,

|B| = 2. If |A| = 2 and |B| = 3, then X = A = {1, 2}. This case we will discuss

separately in the following claim (vi). Therefore, in part (ii) to (v), we assume that

|A| ≥ 3.

Claim 2. (i) For p ∈ A, q ∈ B, we have (p, q)f = (p, q).

(ii) If p 6= q such that (p, q)f = (a, p) for some a ∈ A, then a ∈ A \X.

(iii) For p ∈ B, q ∈ A, we have (p, q)f = (p, q).

(iv) For distinct p, q ∈ B, we have (p, q)f = (p, q).

(v) For distinct p, q ∈ A, we have (p, q)f = (p, q).

(vi) For n = 5, |A| = 2, |B| = 3 and p 6= q, we have (p, q)f = (p, q).

Proof of Claim: (i) Since K = A×B is contained in G′ so that (p, q)f = (p, q) for all

p ∈ A, q ∈ B.

(ii) On contrary, we assume that a ∈ X. Clearly, a 6= p (cf. Lemma 14). If p ∈ A,

then by Claim 1(i), we get (p, a)f = (p, a). Note that q 6= a, otherwise (p, q)f =

(p, q) = (q, p) implies p = q; a contradiction. Consequently, (p, q) ∼ (p, a) gives
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(p, a)f = (p, a) ∼ (a, p) = (p, q)f ; a contradiction of Remark 1. Thus, p ∈ B. For

r ∈ A \ {a, q}, by Claim 1(i), we have (r, a)f = (r, a). Since (p, q) ∼ (r, a) as a 6= p

and r 6= q so that (p, q)f = (a, p) ∼ (r, a) = (r, a)f which is not possible. Thus,

a /∈ X.

(iii) Let p ∈ B and q ∈ A. First suppose that q ∈ X. Then by Lemma 16, (p, q)f ∈
{(s, p) : s ∈ A}∪{(q, s) : s ∈ B}∪{(p, q)}. For r ∈ A\{q}, we have (r, q)f = (r, q) (cf.

Claim 1(i)). Note that (p, q)f 6= (q, s) for any s ∈ B. For instance, if (p, q)f = (q, s)

for some s ∈ B, then (p, q)f = (q, s) ∼ (r, q) = (r, q)f as (p, q) ∼ (r, q), where r ∈
A\{q}; a contradiction of Remark 1. It follows that (p, q)f ∈ {(s, p) : s ∈ A}∪{(p, q)}.
Suppose (p, q)f = (s, p) for some s ∈ A. Note that s ∈ A \ X (see part (ii)). Now

we claim that for any j ∈ X \ {q}, we have (p, j)f = (s′, p) for some s′ ∈ A \X. In

view of Lemma 16, (p, j)f ∈ {(s′, p) : s ∈ A} ∪ {(j, s′) : s′ ∈ B} ∪ {(p, j)}. Note that

(p, j)f 6= (p, j) because (p, q) ∼ (p, j) but (p, q)f = (s, p) � (p, j) (cf. Remark 1). In

a similar manner of (p, q)f 6= (q, s) for any s ∈ B, one can show that (p, j)f 6= (j, s′)

for any s′ ∈ B. It follows (p, j)f = (s′, p) for some s′ ∈ A. By part (ii), we get

(p, j)f = (s′, p) for some s′ ∈ A \X. Clearly, the subgraph induced by the vertices of

the form (p, j) where j ∈ X forms a clique. Consequently, for any i ∈ X \ {j}, we get

(p, i)f = (s, p) and (p, j)f = (s′, p) are distinct for some s, s′ ∈ A \X. Therefore, we

have |X| ≤ |A \X|; a contradiction. Thus, (p, q)f = (p, q) for all p ∈ B and q ∈ X.

Now we assume q ∈ A \X. In view of Lemma 16, (p, q)f ∈ {(α, p) : α ∈ A}∪ {(q, β) :

β ∈ B} ∪ {(p, q)}. Suppose (p, q)f = (α, p) for some α ∈ A. In fact α ∈ A \X (see

part (ii)). Choose i ∈ X as |X| > |A \X|, from above we get (p, i)f = (p, i) as p ∈ B.

Since (p, q) ∼ (p, i) so that (p, q)f = (α, p) ∼ (p, i) = (p, i)f which is not possible.

Therefore, we have (p, q)f = (q, β) for some β ∈ B if (p, q)f 6= (p, q). Again for i ∈ X
and from the above we get (β, i)f = (β, i). Since (p, q) ∼ (β, i) as p, β ∈ B and

q, i ∈ A gives (p, q)f = (q, β) ∼ (β, i) = (β, i)f ; a contradiction of Remark 1. Thus,

(p, q)f = (p, q) ∀p ∈ B and q ∈ A \X and hence the result hold.

(iv) Let p 6= q ∈ B. In view of Lemma 16, (p, q)f ∈ {(s, p) : s ∈ A}∪{(p, q)}. Suppose

(p, q)f = (s, p) for some s ∈ A. Since (p, s) ∼ (p, q) so that (p, s)f = (p, s) ∼ (s, p) =

(p, q)f ; a contradiction of Remark 1. Thus, (p, q)f = (p, q) for all distinct p, q ∈ B.

(v) By Claim 1(i), we have (p, q)f = (p, q) when q ∈ X. It is sufficient to prove the

result for q ∈ A\X. In view of Lemma 16, (p, q)f ∈ {(q, s) : s ∈ B}∪{p, q)}. Suppose

(p, q)f = (q, s) for some s ∈ B. Then by (iv) part, we have (s, x)f = (s, x) where

x ∈ B \ {s}. For p, q ∈ A and s, x ∈ B, we get (p, q) ∼ (s, x) gives (p, q)f = (q, s) ∼
(s, x) = (s, x)f ; a contradiction of Remark 1. Thus, (p, q)f = (p, q) for all distinct

p, q ∈ A.

(vi) Suppose n = 5, |A| = 2, |B| = 3 and p 6= q. Then X = A so (p, q)f = (p, q) for

all p, q ∈ A (see Claim 1(i)). If p, q ∈ B, then by Lemma 16, (p, q)f ∈ {(s, p) : s ∈
A} ∪ {p, q)}. Suppose (p, q)f = (s, p) for some s ∈ A. Then there exists s′ ∈ A as

|A| = 2. Consequently, (s′, s)f = (s′, s) and (p, q) ∼ (s′, s) gives (p, q)f = (s, p) ∼
(s′, s) = (s′, s)f which is not possible. Thus, (p, q)f = (p, q) for all p, q ∈ B. Now we

suppose that p ∈ B and q ∈ A. In view of Lemma 16, we have (p, q)f ∈ {(r, p) : r ∈
A} ∪ {(q, r′) : r′ ∈ B} ∪ {(p, q)}. Suppose (p, q)f = (r, p) for some r ∈ A = X. For
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β ∈ B \{p}, we get (p, q) ∼ (p, β) and (p, β)f = (p, β) provides (s, p) ∼ (p, β) which is

not possible. Therefore, (p, q)f ∈ {(q, r′) : r′ ∈ B} ∪ {(p, q)}. Let (p, q)f = (q, r′) for

some r′ ∈ B. Since |B| = 3 so that there exists z ∈ B \ {p, r′}. As a consequence, we

have (r′, z) ∼ (p, q) and (r′, z)f = (r′, z) implies (r′, z)f = (r′, z) ∼ (q, r′) = (p, q)f ;

a contradiction. For p ∈ A and q ∈ B, note that (p, q) ∈ A × B ⊆ G′ and G′ is a

retraction. Consequently, (p, q)f = f(p, q) because all the elements of G′ are fixed by

f . Thus, (p, q)f = (p, q) for all p 6= q ∈ [n].

Thus, by Claim 2, we have (p, q)f = (p, q) for all p 6= q. Now we show that (p, p)f =

(p, p) for all p ∈ [n]. On contrary assume that (p, p)f = (x, y) for some (x, y) 6=
(p, p) ∈ Bn. Then (x, y)f = (x, y) as f is a retraction on ∆(Bn). Note that x 6= y.

Otherwise, (p, p) ∼ (x, y) but (p, p)f = (x, y)f = (x, y); a contradiction. Also, observe

that p ∈ {x, y}. Otherwise, being an adjacent elements (x, y) and (p, p) have same

images; again a contradiction. Without loss of generality assume that x = p. For

z ∈ [n] \ {y, p}, we get (p, p) ∼ (y, z) so that (p, p)f = (p, y) ∼ (y, z) = (y, z)f ; a

contradiction of Remark 1. Thus, f is an identity map. Consequently, G′ = ∆(Bn);

a contradiction. Thus, Case 1 is not possible.

Case 2: Suppose |X| ≤ |A \X|. Then X 6= A. Now, we have the following subcases

depend on n. In each subcase, we prove that A = X which is a contradiction.

Subcase 1: n is even. The following claim will be useful in the sequel.

Claim 3. (i) Let i ∈ A \X. Then there exists a unique si ∈ B such that the restriction
map fAi×Bsi of f is a bijection from Ai = {(r, i) : r ∈ A \ {i}} onto Bsi = {(i, s) : s ∈
B \ {si}}.

(ii) In view of part (i), for Y = {si ∈ B : i ∈ A \ X}, we have Y = B. Moreover, for
i 6= j ∈ A \X, we have si 6= sj.

(iii) If x 6= y ∈ B, then (x, y)f = (x, y).

(iv) If i 6= j ∈ A, then (i, j)f = (i, j).

Proof of Claim: (i) Let i ∈ A \X. Then for r ∈ A \ {i}, we have (r, i)f = (i, s) for

some s ∈ B (see Claim 1(ii)). Consequently, Aif ⊂ {(i, s) : s ∈ B}. Since f is one-one

on Ai because Ai forms a clique, we get |Aif | = |Ai| = |A| − 1 = |B| − 1 as n is even.

Thus, there exists si ∈ B such that Aif = Bsi , where Bsi = {(i, s) : s ∈ B \ {si}}.
Hence, fAi×Bsi is a one-one map from Ai onto Bsi .

(ii) Clearly Y ⊆ B. We show that Y ⊂ B is not possible. On contrary, if Y ⊂ B

so there exists s ∈ B \ Y . Let x ∈ B \ {s}. By Lemma 16, (s, x)f ∈ {(α, s) : α ∈
A}∪{(s, x)}. We provide a contradiction for both the possibilities of (s, x)f . Suppose

(s, x)f = (α, s) for some α ∈ A. By Claim 2(ii), in fact we have (s, x)f = (α, s) for

some α ∈ A \X. Then by part (i) there exists sα ∈ B such that the map fAα×Bsα
is a bijection. As sα ∈ Y , s 6= sα so that (α, s) ∈ Bsα . Consequently, there exists

rα ∈ A \ {α} such that (rα, α)f = (α, s). Now since rα, α ∈ A and s, x ∈ B we

get (rα, α) ∼ (s, x) as A and B forms a partition of [n] so that (rα, α)f ∼ (s, x)f .
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But (rα, α)f = (s, x)f = (α, s) which is not possible. It follows that (s, x)f = (s, x).

For i ∈ A \ X, there exists si ∈ Y such that the map fAi×Bsi is a bijection. Since

s 6= si as s /∈ Y gives (i, s) ∈ Bsi . As a result, there exists r ∈ A \ {i} such that

(r, i)f = (i, s). For r, i ∈ A and s, x ∈ B, we get (s, x) ∼ (r, i); again a contradiction

as (s, x)f = (s, x) ∼ (i, s) = (ri, i)f . Hence, Y = B.

(iii) Let x, y ∈ B. Then by Lemma 16, (x, y)f ∈ {(α, x) : α ∈ A} ∪ {(x, y)}. Suppose

(x, y)f = (α, x) for some α ∈ A. In fact α ∈ A \X (see Claim 2(ii)). For x ∈ B = Y ,

there exists ix ∈ A \ X such that fAix×Bx is a bijection. If α ∈ A \ (X ∪ {ix}),
then by part (i) there exists sα ∈ B \ {x} such that the restriction map fAα×Bsα is

a bijective map and (α, x) ∈ Bsα . Consequently, we get (r, α)f = (α, x) for some

r ∈ A \ {α}. But (x, y) ∼ (r, α) as x, y ∈ B and r, α ∈ A gives (x, y)f 6= (r, α)f .

However, we have (x, y)f = (r, α)f ; a contradiction. It follows that α = ix. In view

of Lemma 16, for y′ ∈ B \ {x, y}, note that (x, y′)f ∈ {(α′, x) : α′ ∈ A} ∪ {(x, y′)}.
Now observe that (x, y′)f 6= (x, y′). If (x, y′)f = (x, y′), then (x, y) ∼ (x, y′) provides

(α, x) ∼ (x, y′); a contradiction of Remark 1. Thus, (x, y′)f = (α′, x) for some

α′ ∈ A\X. Further note that α′ 6= α. Otherwise, (x, y) ∼ (x, y′) gives (x, y)f ∼ (x, y′)

but (x, y)f = (x, y′)f = (α, x) which is not possible. Consequently, α′ 6= ix. By the

similar argument used for α 6= ix, we get (r′, α′)f = (α′, x) for some r′ ∈ A \ {α′}.
Since (r′, α′) ∼ (x, y′) we get (r′, α′)f ∼ (x, y′)f but (r′, α′)f = (x, y′)f = (α′, x) is

not possible. Hence, (x, y)f = (x, y) for all x 6= y ∈ B.

(iv) Suppose i 6= j ∈ A. Then by Lemma 16, (i, j)f ∈ {(j, β) : β ∈ B} ∪ {(i, j)}.
If (i, j)f = (j, β) for some β ∈ B then for x ∈ B \ {β} note that (i, j) ∼ (β, x) but

(i, j)f = (j, β) � (β, x) = (β, x)f (cf. part (iii)). Thus, (i, j)f = (i, j).

By Claim 3(iv), we get A = X. Therefore, Case 2 is not possible when n is even.

Subcase 2: n is odd. By Lemma 15, we have either |A| = n+1
2 , |B| = n−1

2 or

|A| = n−1
2 , |B| = n+1

2 (see proof of Lemma 2). First we prove the following claim.

Claim 4. (i) If x and y are distinct elements of B, then (x, y)f = (x, y).

(ii) If x ∈ B and i ∈ A, then (x, i)f = (x, i).

Proof of Claim: (i) First, we suppose that |A| = n+1
2 and |B| = n−1

2 . Let x 6= y ∈ B.

Then by Lemma 16, we get either (x, y)f = (i, x) for some i ∈ A or (x, y)f = (x, y).

Let if possible, (x, y)f = (i, x) for some i ∈ A. In fact i ∈ A \ X (cf. Claim

2(ii)). Also, for r ∈ A \ {i} and i ∈ A \ X, by Claim 1(ii), we get (r, i)f = (i, s)

for some s ∈ B. As a result, Aif ⊆ Bi where Ai = {(r, i) : r ∈ A \ {i}} and

Bi = {(i, s) : s ∈ B}. Since Ai forms a clique, we have f is one-one on Ai. Moreover,

|Aif | = |Ai| = |A|−1 = |B| = |Bi|. Therefore, we get a bijection fAi×Bi from Ai onto

Bi. Then there exists r ∈ A \ {i} such that (r, i)f = (i, x). Note that (x, y) ∼ (r, i)

but (x, y)f = (r, i)f = (i, x) which is not possible. Thus, (x, y)f = (x, y) for all

x 6= y ∈ B.
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On the other hand, we may assume that |A| = n−1
2 and |B| = n+1

2 . Then |B| ≥ 3.

First, we claim that there exist x, y 6= B such that (x, y)f = (x, y). On contrary,

we assume that (x, y)f 6= (x, y) for all x 6= y in B. Let x 6= y ∈ B. By Lemma

16 and Claim 2(ii), we have (x, y)f = (α, x) for some α ∈ A \ X. Similarly, for

any y′ ∈ B \ {x, y}, we have (x, y′)f = (α′, x) for some α′ ∈ A \ X. It follows that

Bxf ⊆ Ax where Bx = {(x, z) : z ∈ B \ {x}} and Ax = {(i, x) : i ∈ A \X}. Since the

set Bx forms a clique so that f is one-one on Bx provide |Bxf | = |Bx| = |B| − 1 =

|A| = |Ax| = |A \ X|. Consequently, we get fBx×Ax is a bijection and X = ∅. For

r ∈ A \ {α}, we have (r, α)f = (α, β) for some β ∈ B (cf. Claim 1(ii)). If β = x,

then (x, y)f = (r, α)f = (α, x) but (x, y) ∼ (r, α) which is not possible. For β 6= x,

by using the similar argument used for x, there exist the subsets Bβ and Aβ such

that the restriction map fBβ×Aβ is a bijective map. As a consequence (α, β) ∈ Aβ so

that there exists (β, s) ∈ Bβ such that (β, s)f = (α, β). As r, α ∈ A and β, s ∈ B,

(r, α) ∼ (β, s) gives (r, α)f ∼ (β, s)f but (r, α)f = (β, s)f = (α, β) which is not

possible. Thus, there exist p 6= q ∈ B such that (p, q)f = (p, q).

For any w ∈ B \ {p, q}, we have either (p, w)f = (p, w) or (p, w)f = (i, p) for some

i ∈ A. Since (p, q) ∼ (p, w) so that (p, q)f = (p, q) ∼ (p, w)f implies (p, w)f 6= (i, p)

for any i ∈ A. Therefore, (p, w)f = (p, w). Consider the subsets A′ = A ∪ {p} and

B′ = B\{p} of [n]. Note that A′ and B′ are the disjoint subsets of [n] with |A′| = n+1
2

and |B′| = n−1
2 so A′×B′ forms a clique of maximum size in G′. If |X| > |A′\X|, then

in Claim 2(iv), replace A and B with A′ and B′ respectively, we get (a, b)f = (a, b)

for all a, b ∈ B′. For |X| ≤ |A′ \X|, by using the similar concept used above we have

(a, b)f = (a, b) for all a, b ∈ B′. Since (p, w)f = (p, w) for all w ∈ B \ {p} so that

(a, b)f = (a, b) for all distinct a, b ∈ B and b 6= p. If possible, let (a, p)f 6= (a, p), then

by Lemma 16, (a, p)f = (l, a) for some l ∈ A. Choose β ∈ B \ {a, p} so (a, β) ∼ (a, p)

and (a, β)f = (a, β) as a, β ∈ B′ we obtained (a, β)f = (a, β) ∼ (l, a) = (a, p); a

contradiction of remark 1. Hence, (a, b)f = (a, b) for all distinct a, b ∈ B.

(ii) Let x ∈ B and i ∈ A. Then by Lemma 16, we have (x, i)f ∈ {(α, x) : α ∈
A} ∪ {(i, β) : β ∈ B} ∪ {(x, i)}. Note (x, i)f 6= (α, x) for any α ∈ A. For instance

if (x, i)f = (α, x) for some α ∈ A, then (x, y) ∼ (x, i) where y ∈ B \ {x} gives

(x, y)f ∼ (x, i)f . By part (i), we get (x, y)f = (x, y) so (x, y) ∼ (α, x); a contradiction

of Remark 1. On the other hand now we get a contradiction for (x, i)f = (i, β) for

some β ∈ B. If β = x then for γ ∈ B \ {x}, we have (x, γ)f = (x, γ) (by part (i)).

Since (x, i) ∼ (x, γ) but (x, i)f = (i, x) � (x, γ) = (x, γ)f which is not possible so

β 6= x. For n ≥ 5, we have |B| ≥ 2. If |B| = 2, then |A| = 3. There exist j, k ∈ A\{i}.
Consequently, (j, i)f = (i, y) and (k, i)f = (i, z) for some y, z ∈ B (cf. Lemma 16).

Because if (j, i)f = (j, i) then (x, i) ∼ (j, i) gives (x, i)f = (i, β) ∼ (j, i) = (j, i)f ;

a contradiction of Remark 1. Similarly, (k, i)f = (k, i) is not possible. Note that

{(x, i), (j, i), (k, i)} forms a clique of size 3 so that {(x, i)f, (j, i)f, (k, i)f} =

{(i, β), (i, y), (i, z)}. Consequently, β, y, z are the elements of B. Thus, |B| ≥ 3; a

contradiction of |B| = 2. It follows that |B| ≥ 3. For z ∈ B \ {x, β} we have (x, i) ∼
(β, z). By part (i), (β, z)f = (β, z). Consequently, (x, i)f = (i, β) ∼ (β, z) = (β, z)f

which is not possible. Hence, (x, i)f = (x, i).
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Now if x ∈ A, then i ∈ A \ X. For x ∈ B, by Claim 4(ii), we have (x, i)f = (x, i).

Since (1, i) ∼ (x, i) so that (1, i)f = (i, s) ∼ (x, i) = (x, i)f ; a contradiction of Remark

1. Thus, X ⊂ A is not possible. Consequently, X = A; a contradiction of Case 2. In

view of Case 1 and Case 2 such X is not possible. Thus, ∆(Bn) admits no proper

retract. Hence, ∆(Bn) is a core.

4. Graph invariants of ∆(Bn)

In this section, we obtained the vertex connectivity and edge connectivity of ∆(Bn).

Theorem 7. For n ≥ 3, the vertex connectivity of ∆(Bn) is n(n− 2).

Proof. By Theorem 4.1.9 of [36] and Corollary 1, we have κ(∆(Bn)) ≤ n(n−2). By

Menger’s theorem (cf. [7, Theorem 3.2]), to prove another inequality, it is sufficient

to show that there exist at least n(n− 2) internally disjoint paths between arbitrary

pair of vertices. Let (a, b) and (c, d) be arbitrary pair of vertices in V (∆(Bn)). Now

consider

A = {(b, x) : x ∈ [n]} ∪ {(x, a) : x ∈ [n]}

and

B = {(d, x) : x ∈ [n]} ∪ {(x, c) : x ∈ [n]}.

Note that |A| = |B| = 2n− 1 and each element of A and B is not adjacent with (a, b)

and (c, d), respectively (see Remark 1). If T = A ∪B ∪ {(a, b), (c, d)}, then note that

every element of T ′ = V (∆(Bn)) \ T , commutes with (a, b) and (c, d). Thus, for each

element (x, y) of T ′, we have a path (a, b) ∼ (x, y) ∼ (c, d). Consequently, there are

at least |T ′| many internally disjoint paths between (a, b) and (c, d). We show that

there exist n(n− 2) internally disjoint paths between (a, b) and (c, d) in the following

cases.

Case 1: Both (a, b) and (c, d) are distinct idempotents. Clearly a = b, c = d and

a 6= c. Then, we have A ∩ B = {(a, c), (c, a)} so that |T ′| = n2 − 4n + 4. As a

consequence, we get n2 − 4n + 4 internally disjoint paths between (a, b) and (c, d).

Furthermore, for x ∈ [n] \ {a, c}, we have (a, a) ∼ (c, x) ∼ (a, x) ∼ (c, c) and (a, a) ∼
(x, c) ∼ (x, a) ∼ (c, c) internally disjoint paths between (a, b) and (c, d) which are

2n − 4 in total. Thus, there are at least n2 − 2n internally disjoint paths between

(a, b) and (c, d).

Case 2: Either (a, b) or (c, d) is idempotent. Without loss of generality, let c = d.

Further, we have the following subcases.

Subcase 2.1: c 6= a, b. Then A ∩ B = {(b, c), (c, a)} so that |T ′| = n2 − 4n + 3.

Consequently, we get n2 − 4n + 3 internally disjoint paths between (a, b) and (c, d).

In addition to that, for x ∈ [n] \ {a, b, c}, we have

(a, b) ∼ (c, x) ∼ (b, x) ∼ (c, c),
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(a, b) ∼ (x, c) ∼ (x, a) ∼ (c, c)

internally disjoint paths between (a, b) and (c, d) which are 2n− 6 in total. Further,

we have three more paths between (a, b) and (c, d) as follows:

(a, b) ∼ (c, b) ∼ (a, a) ∼ (c, c),

(a, b) ∼ (a, c) ∼ (b, b) ∼ (c, c),

(a, b) ∼ (c, c).

Thus, there are at least n2 − 2n internally disjoint paths between (a, b) and (c, d).

Subcase 2.2: c = a or c = b. First suppose c = a. Then, we have A ∩ B = {(x, a) :

x ∈ [n]} so that |T ′| = n2− 3n+ 2. Therefore, ∆(Bn) contains n2− 3n+ 2 internally

disjoint paths between (a, b) and (c, d). Additionally, for x ∈ [n] \ {a, b}, we have

n−1 internally disjoint paths (a, b) ∼ (a, x) ∼ (b, x) ∼ (a, a) between (a, b) and (c, d).

Thus, there are at least n2 − 2n internally disjoint paths between (a, b) and (c, d).

Similarly, for c = b, at least n2− 2n internally disjoint paths between (a, b) and (c, d)

can be obtained.

Case 3: Both (a, b) and (c, d) are non-idempotent elements. Clearly, a 6= b and c 6= d.

Further, we have the following subcases.

Subcase 3.1: a, b, c, d all are distinct. Then, we have A ∩ B = {(b, c), (d, a)} so that

|T ′| = n2 − 4n + 2. Thus, there are n2 − 4n + 2 internally disjoint paths between

(a, b) and (c, d). In addition to that, for x ∈ [n] \ {a, b, c, d}, we have (a, b) ∼ (x, c) ∼
(x, a) ∼ (c, d) and (a, b) ∼ (d, x) ∼ (b, x) ∼ (c, d) internally disjoint paths between

(a, b) and (c, d) which are 2n − 8 in total. Moreover, we have six additional paths

between (a, b) and (c, d) as follows:

(a, b) ∼ (a, c) ∼ (b, b) ∼ (c, d),

(a, b) ∼ (c, c) ∼ (b, d) ∼ (c, d),

(a, b) ∼ (d, c) ∼ (a, a) ∼ (c, d),

(a, b) ∼ (d, d) ∼ (b, a) ∼ (c, d),

(a, b) ∼ (d, b) ∼ (c, a) ∼ (c, d),

(a, b) ∼ (c, d).

Thus, there are at least n2 − 2n internally disjoint paths between (a, b) and (c, d).

Subcase 3.2: c ∈ {a, b}. If c = a, thenA∩B = {(x, a) : x ∈ [n]} so that |T ′| = n2−3n.
Therefore, ∆(Bn) contains n2 − 3n internally disjoint paths between (a, b) and (c, d).
Additionally, for x ∈ [n] \ {a, b, d}, we have (a, b) ∼ (d, x) ∼ (b, x) ∼ (a, d) internally
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disjoint paths between (a, b) and (c, d) which are n− 3 in total. Besides these paths,
we have three paths between (a, b) and (c, d) as follows:

(a, b) ∼ (d, b) ∼ (a, a) ∼ (b, d) ∼ (a, d),

(a, b) ∼ (d, d) ∼ (b, b) ∼ (a, d),

(a, b) ∼ (a, d).

Thus, there are at least n2 − 2n internally disjoint paths between (a, b) and (c, d).
On the other hand c = b. Now we have the two possibilities (i) d = a (ii) a, b, d are
distinct. If d = a, then A∩B = {(b, b), (a, a)} so that |T ′| = n2−4n+4. Consequently,
we get n2 − 4n + 4 internally disjoint paths between (a, b) and (c, d). In addition to
that, for x ∈ [n] \ {a, b}, we have (a, b) ∼ (x, b) ∼ (x, a) ∼ (b, a) and (a, b) ∼ (a, x) ∼
(b, x) ∼ (b, a) internally disjoint paths between (a, b) and (c, d) which are 2n − 4 in
total. Thus, we get at least n2− 2n internally disjoint paths between (a, b) and (c, d).
For distinct a, b and d, we get A ∩ B = {(d, a), (b, b)} so that |T ′| = n2 − 4n + 4.
Consequently, we get n2 − 4n + 4 internally disjoint paths between (a, b) and (c, d).
Additionally, for x ∈ [n] \ {a, b, d}, we have 2n− 6 internally disjoint paths

(a, b) ∼ (x, b) ∼ (x, a) ∼ (b, d),

(a, b) ∼ (d, x) ∼ (b, x) ∼ (b, d)

between (a, b) and (c, d). Besides these paths, we have two more paths (a, b) ∼
(d, b) ∼ (a, a) ∼ (b, d) and (a, b) ∼ (d, d) ∼ (b, a) ∼ (b, d). Thus, there are at least

n2 − 2n internally disjoint paths between (a, b) and (c, d).

Subcase 3.3: d ∈ {a, b}. If d = a, then A∩B = {(b, c), (a, a)} so that |T ′| = n2−4n+4.

Consequently, we get n2 − 4n + 4 internally disjoint paths between (a, b) and (c, d).

In addition to that, for x ∈ [n] \ {a, b, c}, we have (a, b) ∼ (a, x) ∼ (b, x) ∼ (c, a)

and (a, b) ∼ (x, c) ∼ (x, a) ∼ (c, a) internally disjoint paths between (a, b) and (c, d)

which are 2n − 6 in total. Moreover, we have two paths (a, b) ∼ (a, c) ∼ (b, b) ∼
(c, a) and (a, b) ∼ (c, c) ∼ (b, a) ∼ (c, a) between (a, b) and (c, d). Thus, there are at

least n2 − 2n internally disjoint paths between (a, b) and (c, d). On the other hand,

let d = b. Then A∩B = {(b, x) : x ∈ [n]} so that |T ′| = n2 − 3n. As a consequence,

we get n2 − 3n internally disjoint paths between (a, b) and (c, d). Furthermore, for

x ∈ [n]\{a, b, c}, we have n−3 internally disjoint paths (a, b) ∼ (x, c) ∼ (x, a) ∼ (c, b)

between (a, b) and (c, d). Besides these paths, we have three more paths between (a, b)

and (c, d) as follows:

(a, b) ∼ (c, c) ∼ (a, a) ∼ (c, b),

(a, b) ∼ (a, c) ∼ (b, b) ∼ (c, a) ∼ (c, b),

(a, b) ∼ (c, b).

Thus, there are at least n2−2n internally disjoint paths between (a, b) and (c, d).

In view of Lemma 1 and since κ(G) ≤ κ′(G) ≤ δ(G), we have the following corollary.
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Corollary 3. For n ≥ 3, the edge connectivity of ∆(Bn) is n(n− 2).

Open Problem: The work in this paper can be carried out for other class of semi-

groups viz. the semigroup of all partial maps on a finite set and its various subsemi-

groups. In view of Theorem 1; to investigate the commuting graph of finite 0-simple

inverse semigroup, it is sufficient to investigate ∆(Bn(G)). In this connection, the re-

sults obtained in this paper might be useful. For example, using the result of ∆(Bn),

in particular Theorem 2(iii), we prove the following theorem which gives a partial

answer to the problem posed in [3, Section 6].

Theorem 8. For n ≥ 3, ∆(Bn(G)) is Hamiltonian.

Proof. Let G = {a1, a2, . . . , am}. We show that there exists a Hamiltonian cycle

in ∆(Bn(G)). First note that if (i, j) ∼ (k, l) in ∆(Bn), then (i, a, j) ∼ (k, b, l) in

∆(Bn(G)) for all a, b ∈ G. Let Ga1 = {(i, a1, j) : i, j ∈ [n]}. Since ∆(Bn) is

Hamiltonian (see Theorem 2), we assume that there exists a Hamiltonian cycle C .

Corresponding to the cycle C, choose a Hamiltonian path P whose first vertex is (i, j)

and the end vertex is (k, l). For the path P , there exists a Hamiltonian path in the

subgraph induced by Ga1 whose first vertex is (i, a1, j) and the end vertex is (k, a1, l).

Since (i, j) ∼ (k, l) in ∆(Bn), we have (k, a1, l) ∼ (i, a2, j). By the similar way, we

get a Hamiltonian path in the subgraph induced by Ga2 whose first vertex is (i, a2, j)

and the end vertex is (k, a2, l). On Continuing this process, we get a Hamiltonian

path in ∆(Bn(G)) with first vertex is (i, a1, j) and the end vertex is (k, am, l). For

(i, j) ∼ (k, l), we get (i, a1, j) ∼ (k, am, l). Thus, ∆(Bn(G)) is Hamiltonian.
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