[2] A. Behtoei and M. Anbarloei, Gutman index of the Mycielskian and its complement, arXiv:1502.01580 (2015).
[4] D. Boutin, S. Cockburn, L. Keough, S. Loeb, K.E. Perry, and P. Rombach, Symmetry parameters for Mycielskian graphs, Research Trends in Graph Theory and Applications (D. Ferrero, L. Hogben, S.R. Kingan, and G.L. Matthews, eds.),
Springer International Publishing, Cham, 2021, pp. 99–117.
[5] V. Chvátal, The minimality of the Mycielski graph, Graphs and Combinatorics (Berlin, Heidelberg) (R.A. Bari and F. Harary, eds.), Springer Berlin Heidelberg, 1974, pp. 243–246.
[6] M.T. Cronin, J. Leszczynski, and T. Puzyn, Recent Advances in QSAR Studies Methods and Applications, Challenges and Advances in Computational Chemistry and Physics, vol. 8, Springer, Dordrecht, Heidelberg, London, New York, 2010.
[8] R. Cruz, A. Santamaría-Galvis, and J. Rada, Extremal values of vertex-degree-based topological indices of coronoid systems, Int. J. Quantum Chem. 121 (2020), no. 6,
https://doi.org/10.1002/qua.26536.
[11] K.C. Das, S. Elumalai, and S. Balachandran, Open problems on the exponential vertex-degree-based topological indices of graphs, Discrete Appl. Math. 293 (2021), 38–49.
https://doi.org/10.1016/j.dam.2021.01.018
[13] J. Devillers and A.T. Balaban (eds.), Topological Indices and Related Descriptors in QSAR and QSPR, CRC Press, London, 1999.
[14] A. Estrada-Moreno and J.A. Rodríguez-Velázquez, On the general Randić index of polymeric networks modelled by generalized Sierpi
ński graphs, Discrete Appl. Math. 263 (2019), 140–151.
https://doi.org/10.1016/j.dam.2018.03.032
[15] C. Gopika, J. Geetha, and K. Somasundaram, Weighted PI index of tensor product and strong product of graphs, Discrete Math. Algorithms Appl. 13 (2021), Atricle ID: 2150019.
https://doi.org/10.1142/S1793830921500191
[16] S. Gravier, M. Kovse, and A. Parreau, Generalized sierpiński graphs 1, Posters at EuroComb’11, R´enyi Institute, Budapest, 2011.
[18] I. Gutman, Geometric approach to degree–based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), no. 1, 11–16.
[20] T. Hasunuma, Structural properties of subdivided-line graphs, J. Discrete Algorithms 31 (2015), 69–86, 24th International Workshop on Combinatorial Algorithms (IWOCA 2013).
[23] I. Javaid, H. Benish, M. Imran, A. Khan, and Z. Ullah, On some bounds of the topological indices of generalized Sierpiński and extended Sierpiński graphs, J. Ine. Appl. 2019 (2019), Article number: 37
[25] J. Mycielski, Sur le coloriage des graphs, Colloquium Math. 3 (1955), no. 2, 161–162 (Fre).
[26] P.G. Nayana and R.R. Iyer, On secure domination number of generalized Mycielskian of some graphs, J. Intelligent & Fuzzy Sys 44 (2023), no. 3, 4831–4841.
https://doi.org/10.3233/JIFS-223326
[31] J.A. Rodríguez-Velázquez, E.D. Rodríguez-Bazan, and A. Estrada-Moreno, On generalized Sierpiński graphs, Discuss. Math. Graph Theory 37 (2017), no. 3, 547–560.
https://doi.org/10.7151/dmgt.1945
[32] Y. Shang, On the number of spanning trees, the laplacian eigenvalues, and the laplacian estrada index of subdivided-line graphs, Open Math. 14 (2016), no. 1, 641–648.
https://doi.org/10.1515/math-2016-0055
[34] M. Stiebitz, Beiträge zur theorie der färbungskritischen graphen, Ph.D. thesis, Technical University Ilmenau, 1985.