A study on structure of codes over Z4+uZ4+vZ4

Document Type : Original paper

Author

Department of Mathematics, Presidency University, Bangalore, Karnataka, India

Abstract

We study (1+2u+2v)-constacyclic code over a semi-local ring S=Z4+uZ4+vZ4 with the condition u2=3u,v2=3v, and uv=vu=0,  we show that  (1+2u+2v)-constacyclic code over S is equivalent to quasi-cyclic code over Z4 by using two new Gray maps from S to Z4. Also, for odd length n we have defined a generating set for constacyclic codes over S. Finally, we obtained some examples which are new to the data base [Database of Z4 codes [online]}, http://Z4 Codes.info(Accessed March 2, 2020)].

Keywords

Main Subjects


[1] T. Abualrub and I. Siap, Reversible cyclic codes over Z4, Australas. J. Comb. 38 (2007), 195–206.
[2] M. Ashraf and G. Mohammad, (1+u)-constacyclic codes over Z4+uZ4, arXiv:1504.03445v1. (2015).
[3] D. Boucher, W. Geiselmann, and F. Ulmer, Skew-cyclic codes, Appl. Algebra Eng. Comm. Compute. 18 (2007), no. 4, 379–389.
https://doi.org/10.1007/s00200-007-0043-z
[4] D. Boucher, P. Solé, and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun. 2 (2008), no. 3, 273–292.
http://doi.org/10.3934/amc.2008.2.273
[5] Y. Cengellenmis, A. Dertli, and N. Aydın, Some constacyclic codes over Z4[u]/u2, new Gray maps, and new quaternary codes, Algebra Colloq. 25 (2018), no. 3, 369–376.
https://doi.org/10.1142/S1005386718000263
[6] J. Gao, F. Ma, and F. Fu, Skew constacyclic codes over the ring Fq+vFq, Appl. Comput. Math 6 (2017), no. 3, 286–295.
[7] F. Gursoy, I. Siap, and B. Yildiz, Construction of skew cyclic codes over Fq+vFq, Adv. Math. Commun. 8 (2014), no. 3, 313–322.
https://doi.org/10.3934/amc.2014.8.313
[8] H. Islam, T. Bag, and O. Prakash, A class of constacyclic codes over Z4[u]/uk, J. Appl. Math. Comput. 60 (2019), no. 1,2, 237–251.
https://doi.org/10.1007/s12190-018-1211-y
[9] H. Islam and O. Prakash, A class of constacyclic codes over the ring Z4[u,v]/u2,v2,uvvu and their Gray images, Filomat 33 (2019), no. 8, 2237–2248.
[10] E. Martinez-Moro, S. Szabo, and B. Yildiz, Linear codes over Z4[x]/x2+2x, Int. J. Inf. Coding Theory 3 (2015), no. 1, 78–96.
[11] M. Özen, N.T. Özzaim, and N. Aydin, Cyclic codes over Z4+uZ4+u2Z4, Turkish J. Math. 41 (2017), no. 5, 1235–1247.
http://doi.org/10.3906/mat-1602-35
[12] M. Özen, F.Z. Uzekmek, N. Aydin, and N. Özzaim, Cyclic and some constacyclic codes over the ring Z4[u]/u21, Finite Fields Appl. 38 (2016), 27–39.
[13] V.S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over Z4, IEEE Trans. Inform. Theory 42 (1996), no. 5, 1594–1600.
https://doi.org/10.1109/18.532906
[14] M. Shi, L. Qian, L. Sok, N. Aydin, and P. Solé, On constacyclic codes over Z4[u]/u21 and their Gray images, Finite Fields Appl. 45 (2017), 86–95.
[15] I. Siap, T. Abualrub, N. Aydin, and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory 2 (2011), no. 1, 10–20.
http://doi.org/10.1504/IJICOT.2011.044674
[16] T. Yao, M. Shi, and P. Solé, Skew cyclic codes over Fq+uFq+vFq+uvFq, J. Algebra Comb. Discrete Struct. Appl. 2 (2015), no. 3, 163–168.
[17] B. Yildiz and N. Aydin, On cyclic codes over Z4+uZ4 and their Z4–images, Int. J. Inf. Coding Theory 2 (2014), no. 4, 226–237.
https://doi.org/10.1504/IJICOT.2014.066107
[18] B. Yildiz and A. Kaya, Self-dual codes over Z4[x]/x2+2x and the Z4-images, Int. J. Inf. Coding Theory 5 (2018), no. 2, 142–154.
[19] H. Yu, Y. Wang, and M. Shi, (1+u)-constacyclic codes over Z4+uZ4, Springerplus 5 (2016), no. 1, Artice number 1325.