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Abstract: We study (1 + 2u + 2v)-constacyclic code over a semi-local ring S =
Z4 + uZ4 + vZ4 with the condition u2 = 3u, v2 = 3v, and uv = vu = 0, we show that

(1+2u+2v)-constacyclic code over S is equivalent to quasi-cyclic code over Z4 by using

two new Gray maps from S to Z4. Also, for odd length n we have defined a generating
set for constacyclic codes over S. Finally, we obtained some examples which are new

to the data base [Database of Z4 codes [online], http://Z4 Codes.info(Accessed March

2, 2020)].
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1. Introduction

Cyclic codes have been well studied due to their algebraic structures. It has been

playing a crucial role in its preferable applications. Pless et al. [13] discussed Z4 cyclic

codes and proved the existence of idempotent generators for certain cyclic codes. In

2014, Yildiz et al [17] determined algebraic structures of codes over the ring Z4 +uZ4

and they obtained the basic facts about their generators with this they conducted a

computer search and obtained many new linear codes over Z4. Later, Ashraf et al. [2]

studied (1+u)-constacyclic codes over Z4+uZ4. In 2015 and 2018 Martinez-Moro et al.

and Yilditz et al. studied linear codes and self-dual codes over Z4[x]/〈x2 + 2x〉 which

is isomorphic to Z4[x]/〈x2 − 1〉 in [10, 18], respectively. Also, Yu et al. [19] defined

new Gray maps over Z4[u]/〈u2〉 and obtained good binary codes are constructed using

(1+u) and Cengellenmis et al. [5] also studied constacyclic code over this ring. On the

other hand, Shi et al. [14] studied (1 + 2u)-constacyclic codes over Z4[u]/〈u2−1〉 and

they obtained new Z4 codes with better parameter. Ozen et al. [12] studied (2 + u)

constacyclic code over Z4[u]/〈u2 − 1〉 and they obatined new Z4 codes with better

parameter. These studies produced many significant linear codes to improve the
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online database [Database of Z4 codes [online], http://Z4 Codes.info(Accessed March

2, 2020)]. In 2017, Ozen et al. [11] studied the cyclic codes over Z4 + uZ4 + u2Z4,

where u3 = 0 and determined their minimal spanning sets they have also obtained

many new quarternary linear codes from the Z4-images of these codes. Recently,

Islam et al. [8] and Islam and Prakash [9] discussed the Z4-images of constacyclic

codes over Z4[u]/〈uk〉, and Z4[u, v]/〈u2, v2, uv − vu〉, respectively.

On the other side, the codes over non-commutative rings was studied by, Boucher et

al. [3] he introduced the skew cyclic (or θ-cyclic) code which is a generalized class of

cyclic codes. Skew cyclic codes over arbitrary length was studied by Irfan et al. [15].

Later, skew cyclic and skew constacyclic codes over finite rings gained much attention

of many mathematician [4, 6, 7, 16].

Inspired by the above results, this paper considers constacyclic codes over the

non-chain finite commutative ring S = Z4 + uZ4 + vZ4, u2 = 3u, v2 =

3v, and uv = vu = 0. The rest of this paper is organized as follows. Section 2 gives

some preliminary results. Gray maps for (1 + 2u+ 2v)-constacyclic codes are studied

in Section 3. The structure of (1 + 2u + 2v)-constacyclic code and their generating

polynomials are discussed in Section 4 with some examples in Section 5.

2. Preliminaries

Let S = Z4 + uZ4 + vZ4, u
2 = 3u, v2 = 3v, and uv = vu = 0 be a commuative ring

of order 64 with a unique maiximal ideal 〈u, v, 2〉, then the quotient ring S
〈u,v,2〉 is

isomorphic to Z2. Any element in the ring S can be uniquely written as a + ub + vc

where a, b and c are elements of Z4. A non-empty subset C of Rn is said to be a

linear code of length n if C is an R-submodule of Sn. The elements of C are called

codewords.

An element a+ ub+ vc is said to be unit in S only if a is a unit element in S. Let α

be a unit in S then we define α-constacyclic shift as folows

φα(c0, c1, . . . , cn−1) = (αcn−1, c0, . . . , cn−2).

A code whose codewords satisfy this shift is called an α-constacyclic code. When

α = 1 then α-constacyclic is a cyclic code and when α = −1 then α-constacyclic is a

negacyclic code.

It is convineant to identify each code word of α-constacyclic code as a polynomial in
S[x]

(xn−α) through a linear map φ as given below

φ : C 7→ S[x]

(xn − α)
, φ(c0, c1, . . . , cn−1) = c0 + c1x+ · · ·+ cn−1x

n−1.

Then set of α-constacyclic code words in Rn can be seen as a polynomial collection

over S[x]
(xn−α) . And it can be seen that each α-cyclic shift in C represent xc(x) in

codoamin and thus we have the following theorem.



G. Karthick 569

Theorem 1. Let C be a linear code of length n over S. Then C is a α-constacyclic over
S if and only if C is an ideal of S[x]

(xn−α) .

Let r = (r1, r2, . . . , rm) ∈ Zmn4 where ri ∈ Zn4 for i = {1, 2, · · · ,m} then we define a

map υ : Zmn4 → Zmn4 , υ(r1, r2, . . . , rm) = (σ(r1), σ(r2), . . . , σ(rm)) where σ is cyclic

shift operator defined above if a code C is closed under this shift operator then we

call it as quasi cyclic code of index m.

Definition 1. Let C be a linear code of length n over Z4. Then C is said to be r-cyclic
code if σr(C) = C, where σ is the cyclic shift operator. Note that for r ≥ 2, every cyclic
code is r-cyclic but not conversely.

Note: From now α represent the unit element 1 + 2u+ 2v.

3. Gray Maps over S and their Properties

In this section we define two different Gray maps and shown that the Gray images

α-constacyclic code is cyclic and quasi cyclic code over Z4 where α = 1 + 2u+ 2v.

Definition 2. Let γ1 be linear map defined from S to Z2
4,

γ1(a+ ub+ vc) = (2a+ 3b+ 3c, 2a+ b+ c).

The Gray map γ1 can be extended for length n. The Lee weight of a ∈ Z4 is defined

as min(a, 4− a) and is denoted as wL(a). For any element r = (a+ ub+ vc) ∈ S we

define the Lee weight of a code as wL(r) = wL(γ1(r)). Then Lee distance of code C

is dL(C) = min(wL(ci − cj)) where ci, cj ∈ C.

Lemma 1. Let γ1 be the gray map defined then it satisfies σγ1(s) = γ1φα(s) where σ
represents the cyclic shift operator and s is an element in Sn.

Proof. Let s = s0, s1, . . . , sn−1 where si = ai + ubi + vci. We have

σγ1(s) = σγ1(s0, s1, . . . , sn−1)

= σ(2a0 + 3b0 + 3c, 2a1 + 3b1 + 3c1, . . . , 2an−1 + 3bn−1 + 3cn−1, 2a0

+b0 + c0, 2a1 + b1 + c1, . . . , 2an−1 + bn−1 + cn−1)

= (2an−1 + bn−1 + cn−1, 2a0 + 3b0 + 3c, . . . , 2an−1 + 3bn−1 + 3cn−1, 2a0

+b0 + c0, 2a1 + b1 + c1, . . . , 2an−1 + bn−1 + cn−1).
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On the other hand

γ1φα(s) = γ1φα(s0, s1, . . . , sn−1)

= γ1(αsn−1, s0, . . . , sn−2)

= γ1(an−1 + u(3bn−1 + 2an−1) + v(3cn−1 + 2an−1), a0 + ub0

+vc0, . . . , an−2 + ubn−2 + vcn−2)

= (2an−1 + bn−1 + cn−1, 2a0 + 3b0 + 3c, . . . , 2an−1 + 3bn−1 + 3cn−1, 2a0

+b0 + c0, 2a1 + b1 + c1, . . . , 2an−1 + bn−1 + cn−1).

Theorem 2. Let C be a α-constacyclic code then γ1(C) is a cyclic code of length 2n over
Z4.

Proof. Let C be a α-constacyclic code then it for each a ∈ C we have φα(a) ∈ C. Thus
by usingn Lemma 1 we have σγ1(C) = γ1φα(C) = γ1(C), implies γ1(C) is a cyclic code of
length 2n over S.

Definition 3. Let s = (s0, s1, . . . , sn−1) ∈ Sn where si = ai + ubi + vci then define the
permutation of Gray image γ1 from Sn to Z2n

4 as γ∗
1 given by

γ∗
1 (s0, s1, . . . , sn−1) = (2a0 + 3b0 + c0, 2a0 + b0 + c0, 2a1 + 3b1 + c1, 2a1 + b1 + c1, . . . , 2an−1

+3bn−1 + 3cn−1, 2an−1 + bn−1 + cn−1).

Lemma 2. Let γ∗
1 be permutation Gray map then it satisfies γ∗

1 (σ)(s) = σ2(γ∗
1 )(s) where

s is an element in S.

Proof. Let s = s0, s1, . . . , sn−1 where si = ai + wbi. We have

γ∗1 (σ)(s) = γ∗1 (σ)(s0, s1, . . . , sn−1)

= γ∗1 (sn−1, s0, . . . , sn−2)

= (2an−1 + 3bn−1 + 3cn−1, 2an−1 + bn−1 + cn−1, 2a0 + 3b0 + 3c0, 2a0 +

b0 + c0, · · · , 2an−2 + 3bn−2 + 3cn−1, 2an−2 + bn−2 + cn−2).

On the other side we have,

σ2(γ∗1)(s) = σ2(γ∗1 )(s0, s1, . . . , sn−1)

= σ2(2a0 + 3b0 + c0, 2a0 + b0 + c0, 2a1 + 3b1 + c1, 2a1 + b1 + c1, . . . , 2an−1

+3bn−1 + 3cn−1, 2an−1 + bn−1 + cn−1)

= (2an−1 + 3bn−1 + 3cn−1, 2an−1 + bn−1 + cn−1, 2a0 + 3b0 + 3c0, 2a0

+b0 + c0, . . . , 2an−2 + 3bn−2 + 3cn−1, 2an−2 + bn−2 + cn−2).
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Theorem 3. If C be a cyclic code of length n then γ∗
1 (C) is a two cyclic code of length

2n over Z4.

Proof. Let C be a cyclic code of length n then it satisfies σ(c) ∈ C for all c ∈ C.
Using Lemma 2 we have γ∗1σ(C) = γ∗1(C) = σ2γ∗1 (C). Hence γ∗1(C) is a two cyclic

code of length 2n over Z4.

Definition 4. Let γ2 be a linear map defined from S to Z2
4 by

γ2(a+ ub+ vc) = (a+ 2b+ 2c, 2b+ 2c, a).

The map γ2 can be extended to length n. For any element r = (a+ ub+ vc) ∈ S we

define the Lee weight of a code as wL(r) = wL(γ2(r)). Then Lee distance of code C

is dL(C) = min(wL(ci − cj)) where ci, cj ∈ C.

Lemma 3. Let γ2 be a gray map defined in Definition 4 then it satisfies υ3γ2(s) = γ2φα(s)
for any s ∈ Sn.

Proof. Let s = (s0, s1, . . . , sn−1) where si = ai + ubi + vci. Then we have

υ3γ2(s) = υ3γ2(s0, s1, . . . , sn−1)

= υ3(a0 + 2b0 + 2c0, a1 + 2b1 + 2c1, . . . , an−1 + 2bn−1 + 2cn−1, 2b0 + 2c0, 2b1

+2c1, · · · , 2bn−1 + 2cn−1, a0, a1, . . . , an−1)

= (an−1 + 2bn−1 + 2cn−1, . . . , an−2 + 2bn−2 + 2cn−2, 2bn−1 + 2cn−1, 2b0

+2c0, . . . , 2bn−2 + 2cn−2, an−1, a0, . . . , an−2).

Thus, on the other hand

γ2φα(s) = (s0, s1, . . . , sn−1)

= γ2(αsn−1, s0, . . . , sn−2)

= γ2(an−1 + u(3bn−1 + 2an−1) + v(3cn−1 + 2an−1), a0 + ub0 + vc0, . . . , an−2

+ubn−2 + vcn−2)

= (an−1 + 2bn−1 + 2cn−1, a0 + 2b0 + 2c0 . . . , an−2 + 2bn−2

+2cn−2, 2bn−1 + 2cn−1, 2b0 + 2c0, . . . , 2bn−2 + 2cn−2, an−1, a0, . . . , an−2).

Hence, we have the following theorem.

Theorem 4. Let C be a α-constacyclic code then δ2(C) is a quasi cyclic code of length
2n over Z4.
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Proof. Since C is a α-constacyclic code then φα(s) ∈ C for all s ∈ C. Then by using

3 we have γ2φα(C) = γ2(C) = υ3γ2(C). Implies γ2(C) is a quasi cyclic code of length

2n with index 3.

Definition 5. Let s = (s0, s1, . . . , sn−1) ∈ Sn where si = ai + ubi + vci then define
permutation of the Gray image γ2 from Sn to Z2n

4 as γ∗
2 given by

γ∗
2 (s0, s1, . . . , sn−1) = (a0 + 2b0 + 2c0, 2b0 + 2c0, a0, a1 + 2b1 + 2c1, 2b1 + 2c1, a1, · · · , an−1

+2bn−1 + 2cn−1, 2bn−1 + 2cn−1, an−1).

Lemma 4. Let γ∗
2 be permutation Gray map then it satisfies γ∗

2 (σ)(s) = σ3(γ∗
2 )(s) where

s is an element in S.

Proof. Let s = s0, s1, . . . , sn−1 where si = ai + wbi. We have

γ∗2 (σ)(s) = γ∗2 (σ)(s0, s1, . . . , sn−1)

= γ∗2 (sn−1, s0, . . . , sn−2)

= (an−1 + 2bn−1 + 2cn−1, 2bn−1 + 2cn−1, an−1a0 + 2b0 + 2c0, 2b0

+2c0, a0, . . . , an−1 + 2bn−1 + 2cn−1, 2bn−1 + 2cn−1, an−1).

On the other side we have

σ3(γ∗2)(s) = σ2(γ∗2 )(s0, s1, . . . , sn−1)

= σ3(a0 + 2b0 + 2c0, 2b0 + 2c0, a0, a1 + 2b1 + 2c1, 2b1 + 2c1, a1, . . . , an−1

+2bn−1 + 2cn−1, 2bn−1 + 2cn−1, an−1)

= (an−1 + 2bn−1 + 2cn−1, 2bn−1 + 2cn−1, an−1a0 + 2b0 + 2c0, 2b0

+2c0, a0, . . . , an−1 + 2bn−1 + 2cn−1, 2bn−1 + 2cn−1, an−1).

Theorem 5. If C be a cyclic code of length n then γ∗
2 (C) is a three cyclic code of length

2n over Z4.

Proof. Proof is similar to the proof of Theorem 3.

Corollary 1. Let C be a linear code of odd length n over S. Then C is a cyclic code if and
only if ϕ(C) is an α-constacyclic code where ϕ : Sn −→ Sn defined by ϕ(c0, c1, . . . , cn−1) =
(c0, αc1, . . . , α

n−2cn−2, α
n−1cn−1).

Definition 6. [12] Let n be an odd positive integer and ξ = (1, n + 1)(3, n + 3) · · · (2i+
1, n+2i+1) · · · (n−2, 2n−2) a permutation of {0, 1, . . . , 2n−1}. Then Nechaev’s permutation
π is defined by π(c0, c1, . . . , c2n−1) = (cξ(0), cξ(1), . . . , cξ(2n−1)).
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Lemma 5. Let γ1 be the Gray map defined in Definition 2. Then γ1ϕ = πγ1 where π is
Nechaev’s permutation and ϕ is the map defined in Corollary 1.

Proof. Let si = ai+ubi+vci ∈ S for 0 ≤ i ≤ n−1. Then s = (s0, s1, . . . , sn−1) ∈ Sn
and

γ1ϕ(z) = γ1ϕ(s0, s1, . . . , sn−1)

= γ1(s0, αs1, . . . , α
n−1sn−1)

= (2a0 + 3b0 + 3c0, 2a1 + b1 + c1, . . . , 2an−1 + 3bn−1 + 3cn−1, 3b0 + c0,

2a1 + b1 + c1, . . . , 3bn−1 + cn−1).

Further,

πγ1(z) = πγ1(z0, z1, . . . , zn−1)

= π(2a0 + 3b0 + 3c, 2a1 + 3b1 + 3c1, · · · , 2an−1 + 3bn−1 + 3cn−1, 2a0

+b0 + c0, 2a1 + b1 + c1, · · · , 2an−1 + bn−1 + cn−1)

= (2a0 + 3b0 + 3c0, 2a1 + b1 + c1, . . . , 2an−1 + 3bn−1 + 3cn−1, 3b0 + c0,

2a1 + b1 + c1, . . . , 3bn−1 + cn−1).

and therefore γ1ϕ = πγ1.

Theorem 6. For a cyclic code C of odd length n over R, let T = γ1(C). Then π(T ) is
a cyclic code of length 2n over Z4.

Proof. Let C be a cyclic code and T = δ1(C). Then by Lemma 5, πγ1(C) = π(T ) =

ψ1ϕ(C). From Corollary 1, ϕ(C) is an α-constacyclic code. Hence, by Theorem 2,

δ1ϕ(C) is a cyclic code of length 2n over Z4, and thus π(T ) is a cyclic code of length

2n over Z4.

Lemma 6. Let γ2 be the Gray map defined in Definition 4. Then γ2ϕ = πγ2 where π is
Nechaev’s permutation and ϕ is the map defined in Corollary 1.

Proof. The proof is similar to that of Lemma 5 and so is omitted.

Theorem 7. For a cyclic code C of odd length n over R, let T = γ2(C). Then π(T ) is
a quasi-cyclic code of length 3n and index 3 over Z4.

Proof. The proof is similar to that of Theorem 6 and so is omitted.
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4. Structure of (1 + 2u+ 2v)-constacyclic code

In this section we study the structure of cyclic code and α-constacyclic code over S.

Let e1 = (1+u+v), e2 = −u and e3 = −v, it satisfies eiej = 0(i 6= j), e2i = ei and e1+

e2 + e3 = 1. Thus, any element in S can be uniquely expressed as re1 + se2 + te3
where r = a, s = (3b+ a) and t = (3c+ a) are elements in Z4.

Let A,B a non empty set then define A ⊕ B = {a + b | a ∈ A, b ∈ B} and A ⊗ B =

{a, b | a ∈ A, b ∈ B}. Let C be a linear code over S, C1 = {a | ae1 + be2 + ce3 ∈
C}, C2 = {b | ae1 + be2 + ce3 ∈ C} and C3 = {c | ae1 + be2 + ce3 ∈ C}. Thus,

C =
⊕3

i=1 Ci. Note that whenever C is linear in S then C ′is are linear over Z4.

Theorem 8. Let C be a linear code then C is cyclic code of length n over S if and only
if C1, C2 and C3 are cyclic code over Z4.

Proof. Let c = c0, c1, . . . , cn−1 ∈ C where ci = e1ai + e2bi + e3di. Let C be cyclic

over S then σ(c) = σ(a)e1 + σ(b)e2 + σ(d)e3 ∈ C. Implies C1, C2 and C3 are cyclic

code over Z4.

Let C1 be a cyclic codes. Then σ(a) ∈ C1 implies σ(a)e1 + be2 + de3 ∈ C and so

e1(σ(a)e1 + be2 + de3) = σ(a)e1 ∈ C for some b ∈ C2, d ∈ C3. In a similar way

σ(b)e2 ∈ C, σ(d)e3 ∈ C, using linearity we have σ(a)e1 + σ(b)e2 + σ(d)e3 = σ(c) ∈ C.
Hence, C is cyclic over S.

Lemma 7. [1] Let C be a cyclic code of length n over Z4.

1. If n is odd then Z4[x]/(xn−1) is a principal ideal ring and C = (f(x), 2g(x)) = (f(x)+
2g(x)) where f(x) and g(x) generate cyclic codes with g(x)|f(x)|(xn − 1) mod 4.

Theorem 9. Let C be a cyclic code of odd length n. Then there exist g(x) such that
C = 〈g(x)〉.

Proof. Let C be a cyclic code. By Theorem 8 we have C1, C2 and C3 are cyclic.

Since C1, C2 and C3 are cyclic by Lemma 7, Ci = 〈gi(x)〉. Thus, given any element in

eiCi we have eiai(x)gi(x) ∈ eiCi for some ai(x) ∈ Z4[x]. Then using the representation

of C in S we have
∑3
i=1 eiai(x)gi(x) ∈ C. Multiply by ei we get 〈eigi(x)〉 ⊆ C. Hence,

g(x) = e1g1(x) + e2g2(x) + e3g3(x) generates C.

Theorem 10. Let C be linear code then C is α-constacyclic code iff C1 is cyclic,
C2 and C3 are Negacyclic code of length n over Z4.

Proof. First let C be α-constacyclic code over R. Let a = (a0, a1, . . . , an−1) ∈
C1, b = (b0, b1, . . . , bn−1) ∈ C2 and d = (d0, d1, . . . , dn−1) ∈ C3 then ae1 + be2 + de3 ∈
S. Since C is α-constacyclic code,

φα(c0, c1, . . . , cn−1) = (αcn−1, c0, . . . , cn−1).
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Since, (e1 + e2 + e3)(1 + 2u + 2v) = e1 − e2 − e3. We have φ−1(b) ∈ C2, φ−1(b) ∈
C3, σ(a) ∈ C1. Hence, C1 is cyclic and C2, C3 are negacyclic codes.

Conversely, we assume that C1 is cyclic code and C2, C3 are negacyclic code. Let

(c0, c1, · · · , cn−1) ∈ C where ci = e1ai + e2bi + e3ci. Since C1 is cyclic and C2, C3

are negacyclic (φ−1(b), φ−1(d)) ∈ (C2, C3) and σ(a) ∈ C1, we have σ(a)e1 + φ−1(b) +

φ−1(d) ∈ C. That is, (αcn−1, c0, . . . , cn−2) ∈ C. Hence, C is α-constacyclic code.

Theorem 11. Let n be an odd integer. Then the map τ : S[x]/〈xn−1〉 −→ S[x]/〈xn−α〉
defined by τ(f(x)) = f(αx) is a ring isomorphism.

Proof. Let f(x) = g(x) in S[x]/〈xn−1〉. Then f(x) ≡ g(x) mod (xn−1). Replacing

x by αx on both sides gives f(αx) − g(αx) ≡ 0 mod (xnαn − 1) which implies that

f(αx) − g(αx) ≡ 0 mod αn(xn − α) since αn = α for an odd integer n. Thus,

f(αx) = g(αx) in R[x]/〈xn−α〉, so τ is an injective and well-defined map. Moreover,

since S[x]/〈xn−1〉 and S[x]/〈xn−α〉 are finite rings with the same number of elements

and τ is injective, then τ is surjective. Further, one can check that τ is a ring

homomorphism. Hence, τ is a ring isomorphism.

Corollary 2. Let C be a linear code of odd length n over S. Then C is a cyclic code if
and only if τ(C) is an α-constacyclic code over S.

Theorem 12. Let C be a α-constacyclic code over S then there exist a polynomial g(x)
such that C = 〈g(x)〉.

Proof. The proof is similar to the proof of Theorem 9.

Note: Let a(x) + ub(x) + vc(x) = g1(x)e1 + g2(x)e2 + g3(x)e1(x). Then

a(x) = g1(x), b(x) = g1(x) + 3g2(x), c(x) = g1(x) + 3g3(x).

Theorem 13. Let γ1 be the gray map defined and if C = 〈g1(x) + (g1(x) + 3g2(x))u +
(g1(x)+3g3(x))v〉 be α-constacyclic code then γ1(C) is a cyclic code over Z4 and is generated
by (g2(x) + xn3g2(x)), (g3(x) + xn3g3(x)).

Proof. Let r(x) ∈ C then there exist hi(x) ∈ Z4[x] such that

r(x) = (h1(x)g1(x) + (h1(x)g1(x) + 3h2(x)g2(x))u

+(h1(x)g1(x) + 3h3(x)g3(x))v)

γ1(r(x)) = (h2(x)g2(x) + h3(x)g3(x), 3h2(x)g2(x) + 3h3(x)g3(x))

= h2(x)(g2(x), 3g2(x)) + h3(g3(x), 3g3(x)).

Hence, γ1(r(x)) ∈ Z4

(xn−1) ×
Z4

(xn−1) , Using the fact a, b ∈ Z4

(xn−1) ×
Z4

(xn−1) implies

a + xnb ∈ Z4

(x2n−1) , we have that γ1(C) = 〈(g2(x) + xn3g2(x)), (g3(x) + xn3g3(x))〉 is

a cyclic code over Z4

(x2n−1) .
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The proof of the following theorem is similar to the proof of Theorem 13.

Theorem 14. Let γ2 be the gray map defined and if C = 〈g1(x) + (g1(x) + 3g2(x))u +
(g1(x) + 3g3(x))v〉 be α-constacyclic code then γ2(C) is a quasicyclic code of length 3n over
Z4 and is generated by (g1(x) + x2ng1(x)), (2g2(x) + xng2(x)) and (2g3(x) + xng3(x))

5. Examples

In this Section we have computed some codes using Magma Computational Algebra

System. Some codes presented here is new to the Database [Database of Z4 codes

[online], http://Z4 Codes.info(Accessed March 2, 2020)].

Example 1. Let C be a α-constacyclic code of length 7. Then by Theorem 10 C1 is cyclic
and C2, C3 are negacyclic codes over Z4. C is generated by g(x) = e1g1(x) + e2g2(−x) +
e3g3(−x) where, g1(x) = x4 + x3 + 3x2 + 2x + 1, g2(x) = x4 + x3 + 3x2 + 2x + 1, and
g3(x) = x3 + 3x2 + 2x+ 3. So γ2(C) is a linear code of parameter ((21, 4823, 3)) and hence
by Theorem 7, π(γ2(C)) is quasi cyclic code.

Example 2. Let C be a α-constacyclic code of length 7 then by Theorem 10 C1 is cyclic
and C2, C3 are negacyclic codes over Z4. C is generated by g(x) = e1g1(x) + e2g2(−x) +
e3g3(−x) where g1(x) = x4 + x3 + 3x2 + 2x + 1, g2(x) = x4 + x3 + 3x2 + 2x + 1 and
g3(x) = x4 + x3 + 3x2 + 2x+ 1. So γ2(C) is a linear code of parameter ((21, 4623, 4)) and by
Theorem 7, π(γ2(C)) is quasi cyclic code.

Example 3. Let C be a cyclic code of length 15 then by Theorem 8 C1, C2, C3 are
cyclic codes over Z4. C is generated by g(x) = e1g1(x) + e2g2(x) + e3g3(x) where g1(x) =
x6 + 2x4 + x3 + 3x2 + x + 1, g2(x) = x4 + 3x3 + 2x2 + 1 and g3(x) = x + 3. So γ2(C) is a
linear code of parameter ((45, 418213, 3)).

Example 4. Let C be a cyclic code of length 15 then by Theorem 8 C1, C2, C3 are
cyclic codes over Z4. C is generated by g(x) = e1g1(x) + e2g2(x) + e3g3(x) where g1(x) =
x7+3x6+2x5+3x4+2x3+2x2+3, g2(x) = 2x10+2x5+2 and g3(x) = 2x6+2x3+2x2+2x+2.
Thus γ2(C) is a linear code of parameter ((45, 416210, 3)).

In the below table we have computed some codes using Magma Computational Al-
gebra System. (∗ represents the code is new in the Database [Database of Z4 codes
[online], http://Z4 Codes.info(Accessed March 2, 2020)])

n g1(x) g2(x) g3(x) γ1(C) γ2(C)

9 x3 + 2x + 1 g1(x) g1(x) ((18, 41224, 2)) ((27, 418, 24, 2))∗

7 x4 + x3 + 3x2 + 3 x3 + 2x2 + x + 3 g2(x) ((14, 4820, 3)) ((21, 41126, 2))∗

7 x4 + 3x3 + 3x2 + 3 x4 + x3 + 3x2 + 2x + 1 g2(x) ((14, 4620, 4)) ((21, 4922, 3))∗

7 x4 + 3x3 + 3x2 + 3 x4 + x3 + 3x2 + 2x + 1 g2(x) ((14, 4620, 4)) ((21, 4922, 3))∗

9 x8 + x7 + 3x6 + x5 + x4 + 3x3 + x2 + x + 3 x7 + 3x6 + x4 + 3x3 + 3x + 1 g2(x) − ((27, 4622, 3))∗

9 x8 + x7 + 3x6 + x5 + x4 + 3x3 + x2 + x + 3 x3 + 2x + 1 g2(x) − ((27, 41424, 2))∗
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