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Abstract: We study (1 4+ 2u + 2v)-constacyclic code over a semi-local ring S =
Z4 + uZy4 + vZ4 with the condition u? = 3u, v? = 3v, and uv = vu = 0, we show that
(142u+2v)-constacyclic code over S is equivalent to quasi-cyclic code over Z4 by using
two new Gray maps from S to Z4. Also, for odd length n we have defined a generating
set for constacyclic codes over S. Finally, we obtained some examples which are new
to the data base [Database of Z4 codes [online], http://Z4 Codes.info(Accessed March
2, 2020)].
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1. Introduction

Cyclic codes have been well studied due to their algebraic structures. It has been
playing a crucial role in its preferable applications. Pless et al. [13] discussed Z4 cyclic
codes and proved the existence of idempotent generators for certain cyclic codes. In
2014, Yildiz et al [17] determined algebraic structures of codes over the ring Z4 + uZq4
and they obtained the basic facts about their generators with this they conducted a
computer search and obtained many new linear codes over Z4. Later, Ashraf et al. [2]
studied (1+u)-constacyclic codes over Zg+uZy. In 2015 and 2018 Martinez-Moro et al.
and Yilditz et al. studied linear codes and self-dual codes over Z4[x]/(x? + 2x) which
is isomorphic to Z4[z]/{xz? — 1) in [10, 18], respectively. Also, Yu et al. [19] defined
new Gray maps over Z4[u]/(u?) and obtained good binary codes are constructed using
(1+wu) and Cengellenmis et al. [5] also studied constacyclic code over this ring. On the
other hand, Shi et al. [14] studied (1 + 2u)-constacyclic codes over Z4[u]/{u? — 1) and
they obtained new Z4 codes with better parameter. Ozen et al. [12] studied (2 + u)
constacyclic code over Z4[u]/(u? — 1) and they obatined new Z, codes with better
parameter. These studies produced many significant linear codes to improve the
© 2024 Azarbaijan Shahid Madani University
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online database [Database of Z4 codes [online], http://Z4 Codes.info(Accessed March
2, 2020)]. In 2017, Ozen et al. [11] studied the cyclic codes over Zs + uZy + u*Za,
where u? = 0 and determined their minimal spanning sets they have also obtained
many new quarternary linear codes from the Z4-images of these codes. Recently,
Islam et al. [8] and Islam and Prakash [9] discussed the Z4-images of constacyclic
codes over Zy[u]/(u*), and Zy[u,v]/(u?,v%, uv — vu), respectively.

On the other side, the codes over non-commutative rings was studied by, Boucher et
al. [3] he introduced the skew cyclic (or f-cyclic) code which is a generalized class of
cyclic codes. Skew cyclic codes over arbitrary length was studied by Irfan et al. [15].
Later, skew cyclic and skew constacyclic codes over finite rings gained much attention
of many mathematician [4, 6, 7, 16].

Inspired by the above results, this paper considers constacyclic codes over the
non-chain finite commutative ring S = Z4 + uZy + vZ4, u® = 3u,v? =
3v, and wv = vu = 0. The rest of this paper is organized as follows. Section 2 gives
some preliminary results. Gray maps for (1 + 2u + 2v)-constacyclic codes are studied
in Section 3. The structure of (1 + 2u + 2v)-constacyclic code and their generating
polynomials are discussed in Section 4 with some examples in Section 5.

2. Preliminaries

Let S = Zy + uZy + vZy, u? = 3u,v?> = 3v, and uv = vu = 0 be a commuative ring
of order 64 with a unique maiximal ideal (u,v,2), then the quotient ring ﬁ is
isomorphic to Zs. Any element in the ring S can be uniquely written as a + ub + ve
where a,b and ¢ are elements of Z4. A non-empty subset C' of R™ is said to be a
linear code of length n if C' is an R-submodule of S™. The elements of C are called
codewords.

An element a + ub + vc is said to be unit in S only if @ is a unit element in S. Let «
be a unit in S then we define a-constacyclic shift as folows

(ba(CQ,Cl, s acn—l) = (acn—th; .. -acn—2)-

A code whose codewords satisfy this shift is called an a-constacyclic code. When
«a = 1 then a-constacyclic is a cyclic code and when o« = —1 then a-constacyclic is a
negacyclic code.

It is convineant to identify each code word of a-constacyclic code as a polynomial in

(zi[f]a) through a linear map ¢ as given below

B(co, €1y yCno1) =cCo+Crx+ -+ cpqz" L

Then set of a-constacyclic code words in R™ can be seen as a polynomial collection
S[a]
(a"—a)
codoamin and thus we have the following theorem.

over . And it can be seen that each a-cyclic shift in C represent zc(x) in



G. Karthick 569

Theorem 1. Let C be a linear code of length n over S. Then C is a a-constacyclic over
S if and only if C is an ideal of %

Let r = (r1,7r2,...,mm) € Z]"™ where r; € Z for i = {1,2,--- ,m} then we define a
map v : ZJ" — ZP", v(ry,re, ... ) = (0(r1),0(r2),...,0(rm)) where o is cyclic
shift operator defined above if a code C' is closed under this shift operator then we
call it as quasi cyclic code of index m.

Definition 1. Let C be a linear code of length n over Z4s. Then C is said to be r-cyclic
code if ¢"(C) = C, where o is the cyclic shift operator. Note that for r > 2, every cyclic
code is r-cyclic but not conversely.

Note: From now « represent the unit element 1 + 2u + 2v.

3. Gray Maps over S and their Properties

In this section we define two different Gray maps and shown that the Gray images
a-constacyclic code is cyclic and quasi cyclic code over Z, where a = 1 + 2u + 2v.

Definition 2. Let v; be linear map defined from S to Z32,
~v1(a + ub+ ve) = (2a + 3b+ 3¢,2a + b+ ¢).

The Gray map 1 can be extended for length n. The Lee weight of a € Z,4 is defined
as min(a,4 — a) and is denoted as wr,(a). For any element r = (a + ub + vc) € S we
define the Lee weight of a code as wr () = wr(y1(r)). Then Lee distance of code C
is dr,(C) = min(wr(c; — ¢;)) where ¢;,¢; € C.

Lemma 1. Let v1 be the gray map defined then it satisfies ov1(s) = V10a(s) where o
represents the cyclic shift operator and s is an element in S™.

Proof. Let s = sg,S1,...,8,_1 where s; = a; + ub; + vc;. We have

ov1(s) = o71(S0,81,--+58n—1)
= 0(2ap + 3bo + 3¢,2a1 + 3b1 + 3c1, .-+, 251 + 3bp—1 + 3cn—_1,2a0
+bo + co,2a1 + b1+ 1y 2001 + b1+ Cno1)
= (2ap-1+bn-1+cn_1,2a0 +3bo +3c,...,2ap_1 + 3bp_1 + 3cn_1, 209
+bo + co,2a1 + b1+ 1,0y 2an—1 + b1 + 1)
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On the other hand

MPal(s) = Y10a(505515---15n—1)

- ’Yl(asn—h S0y 371—2)
= Yi(an—1 +u(3bp_1 + 2an_1) +v(3ch—1 + 2an_1), ag + uby
V€, -+ -y Ap—g + Ubp—_o + VCr_2)

= (2(171,1 4+ bp_1+cn_1,2a0 +3by+ 3¢, ...,2a,,_1 4+ 3b,_1+ 3cn_1,2a9
+bo + co,2a1 + b1 +c1,. .., 2001 + byt + Cp1).

O

Theorem 2. Let C be a a-constacyclic code then 1 (C) is a cyclic code of length 2n over
Zy.

Proof. Let C be a a-constacyclic code then it for each a € C we have ¢q(a) € C. Thus
by usingn Lemma 1 we have 071 (C) = v1¢a(C) = 71 (C), implies 71 (C) is a cyclic code of
length 2n over S. O

Definition 3. Let s = (so,51,...,80,-1) € S™ where s; = a; + ub; + ve; then define the
permutation of Gray image 1 from S™ to Z3" as ;i given by

7;(50,81,. . .,Sn_l) = (2&0 + 3bo + co, 2a9 + bo + co,2a1 + 3b1 + c1,2a; + b + Cly.nny2Gn—1
+3bn71 + 30n7172an71 + bnfl + Cnfl)~

Lemma 2. Let ] be permutation Gray map then it satisfies vi(0)(s) = o2(v7)(s) where
s is an element in S.

Proof. Let s =sg,$1,...,S,—1 Where s; = a; + wb;. We have

Yi(o)(s) = 7 (o)(s0,51,-- -, 8n-1)

= 71 (8n-1,580,- -+ 8n-2)
(2ap-1 + 3bn—1 + 3cn—1,2an-1 + bp—1 + cn_1, 2a0 + 3by + 3co, 2a¢ +
bo + ¢y 52002+ 3bn—2+3¢cn_1,2an_2 + bp_o + cp_2).

On the other side we have,

a?()(s) = (%) (50581 8n-1)
= 0%(2ag + 3bg + co, 2ag + by + co,2a1 + 3by +c1,2a1 + b1 + 1, .., 20,1
+3bn—1 +3¢n-1,2an-1 + bp_1+ Ccn_1)
= (2ap—1+ 3bp—1+ 3¢n-1,20,-1 + bp—1 + cn_1,2a0 + 3bg + 3co, 2ag
+bo + oy -5 2an—2 4 3bpu_o + 3¢n_1,20n—2 + bp_2 + Cpn_2).
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Theorem 3. If C be a cyclic code of length n then v (C) is a two cyclic code of length
2n over Zy.

Proof. Let C be a cyclic code of length n then it satisfies o(c) € C for all ¢ € C.
Using Lemma 2 we have vfo(C) = ~§(C) = 02~7(C). Hence v;(C) is a two cyclic
code of length 2n over Zg4. O

Definition 4. Let v be a linear map defined from S to Z3 by
Yo(a 4+ ub+wve) = (a+ 2b+ 2¢,2b+ 2¢,a).

The map 72 can be extended to length n. For any element r = (a + ub+ vc) € S we
define the Lee weight of a code as wr(r) = wr(y2(r)). Then Lee distance of code C
is dr.(C) = min(wg (¢; — ¢;)) where ¢;,¢; € C.

Lemma 3. Let v be a gray map defined in Definition 4 then it satisfies v3y2(s) = Vapa(S)
for any s € S™.

Proof. Let s = (so,81,...,Sn—1) where s; = a; + ub; + v¢;. Then we have

v3Y2(s) = v37Y2(80, 81, - -5 Sn—1)

vsz(ag + 2bg + 2¢o, a1 + 2by + 2¢1, ...y an—1 + 2bp—1 + 2¢—1, 200 + 2¢0, 204
+2¢1,-+ , 2bp—1 + 2¢p—1,0a0,01, ..., an_1)

= (ap—1+2bp_1+2¢n-1,..-,an-2+ 2by_o+ 2¢y_2,2b,_1 + 2¢p,_1, 2bg

+2¢0, ., 2bn—2 +2Cn—2,0n_1,00, ..., Qn_2).

Thus, on the other hand

Yodal(s) = (50,81, 8n—-1)
= Ya(aSn—1,50,---,Sn—2)
= Yo(ap—1 4+ u(Bbp-1+2an-1) + v(3cn-1+ 2an-1), a0 + ubg +vcg, ..., an_2
+ubp—o 4+ vep_2)
= (ap—1+2bp_1+2¢n_1,a0 +2by + 2¢o - .., ap_2+ 2b,_o
+2¢p-2,2bp_1 + 2¢p—1,2bo + 2¢0, - ., 2bp—2 + 2Cn—2,An_1,00, . .., Ap_2).

O

Hence, we have the following theorem.

Theorem 4. Let C be a a-constacyclic code then 62(C) is a quasi cyclic code of length
2n over Zy.
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Proof.  Since C'is a a-constacyclic code then ¢, (s) € C for all s € C. Then by using
3 we have 120, (C) = 12(C) = v372(C). Implies 2(C) is a quasi cyclic code of length
2n with index 3. O

Definition 5. Let s = (so,81,...,8n-1) € S™ where s; = a; + ub; + ve; then define
permutation of the Gray image o from S™ to Z2" as ~; given by

75(80,51,. . .,Sn71) = (ao + 2bg —1—260,2[)0 + 2¢p, a0, a1 + 2b1 + 201,21)1 +2c1,a1, ¢ ,Qn-1
+2bn71 + 20n7172bn71 + 20n717an71)'

Lemma 4. Let~; be permutation Gray map then it satisfies v3(a)(s) = o®(v3)(s) where
s is an element in S.

Proof. Let s =sg,$1,...,S,—1 where s; = a; + wb;. We have

Y2(0)(s) = 72(0)(s0, 51, 5n-1)

= 5(Sn—1,50,- -+ Sn—2)
(an—1 4 2bn—1 +2¢n-1,2bp—1 + 2¢pn_1, an—10a0 + 2by + 2¢0, 2bg
+2¢0, a0, -+ -y an—1 4+ 2bp_1 + 2¢—1,2by—1 + 2¢p—1,an_1).

On the other side we have

o2(13)(50, 81, - -+, Sn_1)

CTS(CLO + 2bg + 2¢q, 2bg + 2¢q, ap, a1 + 2b1 + 2¢1,2b1 + 2¢1, a1, ..., Qn_1
+2b,-1 +2¢-1,2bp—1 + 2¢p—1, An—1)

(an—1 + 2bp—1 + 2¢p-1,2bp—1 + 2¢p—1, an—1a0 + 2bo + 2c¢g, 2bo
+2¢0,a0, -y ap—1 + 2bp_1 + 2¢n_1,2bp—1 + 2¢n—1,An—1)-

7*(73)(s)

O

Theorem 5. If C be a cyclic code of length n then v5(C) is a three cyclic code of length
2n over Za.

Proof. Proof is similar to the proof of Theorem 3. O

Corollary 1. Let C be a linear code of odd length n over S. Then C is a cyclic code if and
only if p(C) is an a-constacyclic code where ¢ : S™ — S™ defined by p(co,c1,...,Cn-1) =

n—2 n—1
(co,cty ..., @™ “Cn_2,a" Cp_1).

Definition 6. [12] Let n be an odd positive integer and ¢ = (1,n+ 1)(3,n +3)--- (2 +
1,n+2i+1)--- (n—2,2n—2) a permutation of {0,1,...,2n—1}. Then Nechaev’s permutation
w is defined by 7(co, c1, ..., can—1) = (Ce0), Ce(1)s - - - » Ce(2n—1))-
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Lemma 5. Let vy be the Gray map defined in Definition 2. Then y1 = wy1 where 7 is
Nechaev’s permutation and ¢ is the map defined in Corollary 1.

Proof. Let s; = a;+ub;+vc; € Sfor0<i<mn-—1. Then s = (sg, $1,...,5n-1) € S”
and

119(2) = 110(50,81, 5 8n—1)
= yi(s0,81,...,a" s, 1)
= (2a0 + 3bo + 3co,2a1 + by +c1,. .., 2001 + 3bp_1 + 3cn_1,3bo + co,

2a1 + by +c1,...,3bp_1 + Cn—l)-

Further,
m1(2) = 7™1(20,21,-- 5 2n-1)
= 71'(2(10 + 3bg + 3¢, 2a1 + 3by + 3¢y, - -+ , 20,1 + 3bp_1 + 3Cn_1,2a9
+bo + co,2a1 + b1 41,0, 2001 + byt + 1)
= (2&0 + 3bg + 3¢o,2a1 + b1 +c1, ..., 2001 + 3bp_1 + 3¢n_1,3bg + co,
2(11 + b1 + Cly... 7?)bnfl + Cnfl).
and therefore v, = 7v1. O

Theorem 6. For a cyclic code C of odd length n over R, let T = ~1(C). Then w(T) is
a cyclic code of length 2n over Zy.

Proof. Let C be a cyclic code and T = 61 (C'). Then by Lemma 5, 7y, (C) = n(T) =
P19(C). From Corollary 1, ¢(C) is an a-constacyclic code. Hence, by Theorem 2,
01p(C) is a cyclic code of length 2n over Zg4, and thus 7(7T) is a cyclic code of length
2n over Zy. ]

Lemma 6. Let 2 be the Gray map defined in Definition 4. Then y2¢ = wy2 where T 18
Nechaev’s permutation and ¢ is the map defined in Corollary 1.

Proof. The proof is similar to that of Lemma 5 and so is omitted. O

Theorem 7. For a cyclic code C of odd length n over R, let T = ~2(C). Then w(T) is
a quasi-cyclic code of length 3n and index 3 over Zs.

Proof. The proof is similar to that of Theorem 6 and so is omitted. O
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4. Structure of (1 + 2u + 2v)-constacyclic code

In this section we study the structure of cyclic code and a-constacyclic code over S.
Let e; = (14+u+v),e2 = —u and e3 = —v, it satisfies e;e; = 0(i # j), €7 = ¢; and e;+
es + e3 = 1. Thus, any element in S can be uniquely expressed as re; + ses + teg
where r = a,s = (3b+ a) and t = (3¢ + a) are elements in Z,.

Let A, B a non empty set then define A@ B={a+b|a€ A,be B} and AR B =
{a,b | a € A;b € B}. Let C be a linear code over S, C1 = {a | ae; + bea + ce3 €
C},Cy = {b | ae; + bes + ce3 € C} and C5 = {c | ae; + bes + ce3 € C}. Thus,
C = @?:1 C;. Note that whenever C' is linear in S then C!s are linear over Zj.

Theorem 8. Let C be a linear code then C is cyclic code of length n over S if and only
if C1,C% and C3 are cyclic code over Za.

Proof. Let ¢ = cy,c1,...,ch—1 € C where ¢; = eja; + eab; + esd;. Let C' be cyclic
over S then o(c) = o(a)e; + o(b)es + o(d)es € C. Implies C1,Cy and Cj5 are cyclic
code over Zj.

Let C be a cyclic codes. Then o(a) € Cy implies o(a)e; + bex + des € C and so
ei1(o(a)er + bes + deg) = o(a)ey € C for some b € Co,d € C3. In a similar way
o(b)es € C,o(d)es € C, using linearity we have o(a)e; + o(b)es + o(d)es = o(c) € C.
Hence, C' is cyclic over S. O

Lemma 7. [1] Let C be a cyclic code of length n over Zs.

1. Ifn is odd then Z4[z]/(z™ —1) is a principal ideal ring and C = (f(z),2g(z)) = (f(z)+
29(x)) where f(z) and g(x) generate cyclic codes with g(x)|f(z)|(z™ —1) mod 4.

Theorem 9. Let C be a cyclic code of odd length n. Then there exist g(x) such that
C = (g(x)).

Proof. Let C be a cyclic code. By Theorem 8 we have Cy,C5 and C5 are cyclic.
Since C1,Cs and Cjs are cyclic by Lemma 7, C; = {g;(x)). Thus, given any element in
e;C; we have e;a;(x)g;(x) € e;C; for some a;(x) € Z4[z]. Then using the representation
of C'in S we have Z?Zl eia;(x)g;(xz) € C. Multiply by e; we get (e;g;(x)) C C. Hence,
9(x) = e191(x) + €292() + e3gs(x) generates C. [

Theorem 10. Let C be linear code then C is a-constacyclic code iff Ci is cyclic,
Csy and Cs are Negacyclic code of length n over Zy.

Proof. First let C' be a-constacyclic code over R. Let a = (ap,a1,...,a,-1) €
Ci,b= (bo,bl, ceey bn—l) € (Cyand d= (do, di,..., dn—l) € C5 then ae; + bes + des €
S. Since C' is a-constacyclic code,

Da(Co,Cly v sCn_1) = (ACr—1,€0y -+ Cn_1)-
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Since, (e1 4+ e2 + e3)(1 + 2u + 2v) = e; — ea — e3. We have ¢_1(b) € Ca,0_1(b) €
Cs,0(a) € Cq. Hence, C1 is cyclic and Cs, C3 are negacyclic codes.

Conversely, we assume that C; is cyclic code and Cs,C5 are negacyclic code. Let
(co,c1,++ yen—1) € C where ¢; = eja; + exb; + esc;. Since Cy is cyclic and Cy, Cs
are negacyclic (¢_1(b), p_1(d)) € (Ca,C3) and o(a) € C1, we have o(a)e; + ¢_1(b) +
¢_1(d) € C. That is, (acp—1,¢o,-..,cn—2) € C. Hence, C' is a-constacyclic code. [

Theorem 11. Letn be an odd integer. Then the map 7 : S[z]/{z" —1) — S[z]/{(z" — )
defined by 7(f(x)) = f(ax) is a ring isomorphism.

Proof. Let f(z) = g(z) in S[z]/{z™—1). Then f(z) = g(z) mod (2™ —1). Replacing
x by az on both sides gives f(az) — g(az) = 0 mod (z"a™ — 1) which implies that
f(az) — glax) = 0mod a™(z™ — «) since a” = « for an odd integer n. Thus,
f(ax) = g(ax) in R[z]/{z™ — a), so T is an injective and well-defined map. Moreover,
since S[x]/(x™—1) and S[z]/(z™—«) are finite rings with the same number of elements
and 7 is injective, then 7 is surjective. Further, one can check that 7 is a ring
homomorphism. Hence, 7 is a ring isomorphism. O

Corollary 2. Let C be a linear code of odd length n over S. Then C is a cyclic code if
and only if 7(C) is an a-constacyclic code over S.

Theorem 12. Let C be a a-constacyclic code over S then there exist a polynomial g(z)
such that C = (g(x)).

Proof. The proof is similar to the proof of Theorem 9. O

Note: Let a(z) + ub(x) + ve(z) = g1(x)er + go2(x)ea + gs(x)er(x). Then

a(r) = g1(x),b(x) = g1(x) + 3g2(z), c() = g1(x) + 3g3(=).

Theorem 13. Let v1 be the gray map defined and if C = (g1(x) + (g1(x) + 3g2(z))u +
(g1(z)+3g3(x))v) be a-constacyclic code then v1(C') is a cyclic code over Z4 and is generated
by (g2(2) + z"3g2(2)), (93(x) + 2" 3g5(x)).

Proof. Let r(z) € C then there exist h;(x) € Zy[z] such that

r(z) = (ha(x)g1(x) + (ha(2)g1(x) + 3ha(z)g2(2))u
+(h1(2)g1(x) + 3hs(x)gs(x))v)

(h2(2)g2(x) + ha(x)gs(x), 3ha(x)g2(x) + 3hs(x)gs(x))
ha()(g2(x), 3g2(x)) + hs(gs(x), 3g3(x)).

8

m(r(z))

Hence, v, (r(z)) € (m?iil) X %, Using the fact a,b € (szil) X (3«%74_1) implies

a+z"b e @2%7471)’ we have that v1(C) = ((g2(x) + 2"3g2(2)), (93(x) + 2™3g3(x))) is

a cyclic code over %. =
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The proof of the following theorem is similar to the proof of Theorem 13.

Theorem 14. Let 2 be the gray map defined and if C = (g1(x) + (91(x) + 3g2(z))u +
(g1(z) + 3g3(x))v) be a-constacyclic code then v2(C) is a quasicyclic code of length 3n over
Z4 and is generated by (g1(x) + 2> g1(x)), (2g2(z) + " g2(x)) and (2g3(x) + z"gs(x))

5. Examples

In this Section we have computed some codes using Magma Computational Algebra
System. Some codes presented here is new to the Database [Database of Z4 codes
[online], http://Z4 Codes.info(Accessed March 2, 2020)].

Example 1. Let C be a a-constacyclic code of length 7. Then by Theorem 10 C; is cyclic
and Cs,Cs are negacyclic codes over Zs. C is generated by g(z) = e1g1(x) + e2g2(—2x) +
esgs(—x) where, g1(z) = x* + 23 + 327 + 22 + 1, g2(z) = 2* + 2% + 32% + 22 + 1, and
g3(x) = 2% + 322 + 2z + 3. So 42(C) is a linear code of parameter ((21,4%2%,3)) and hence
by Theorem 7, w(y2(C')) is quasi cyclic code.

Example 2. Let C be a a-constacyclic code of length 7 then by Theorem 10 C; is cyclic
and Co, C3 are negacyclic codes over Zs. C is generated by g(z) = ei1g1(z) + eaga(—2z) +
esga(—x) where gi(z) = z* + 2% + 322 + 22 + 1, g2(2) = 2* + 2® + 322 + 22 + 1 and
g3(x) = z* + 2% + 322 + 2z 4+ 1. So 72(C) is a linear code of parameter ((21,4°23 4)) and by
Theorem 7, 7(v2(C)) is quasi cyclic code.

Example 3. Let C be a cyclic code of length 15 then by Theorem 8 Ci,Cs,Cs are
cyclic codes over Z4. C is generated by g(z) = e1g1(z) + e2g2(z) + eszgs(z) where g1 (z) =
28+ 2zt + 2 + 327 + 2+ 1, go(z) = 2* + 32% + 227 + 1 and g3(z) = 2 + 3. So 12(C) is a
linear code of parameter ((45,4'%2'3 3)).

Example 4. Let C be a cyclic code of length 15 then by Theorem 8 Ci,Cs2,Cs are
cyclic codes over Z4. C is generated by g(z) = e1g1(z) + eag2(z) + esgs(z) where g1 (z) =
274328 4+22° + 32t + 223 4202 43, go(z) = 22" +22° 42 and g3(z) = 22°+22° + 222+ 22 4-2.
Thus v2(C) is a linear code of parameter ((45,4'52'°,3)).

In the below table we have computed some codes using Magma Computational Al-
gebra System. (* represents the code is new in the Database [Database of Z4 codes
[online], http://Z4 Codes.info(Accessed March 2, 2020)])

n g1(x) g2(z) g3 () 71 (C) 72(C)

9 @3 42041 91 (=) g1(x) ((18,4122%,2)) ((27,418, 24 2))*
7 24 + 23 4322 + 3 23 4222 4+ 243 go(z) ((14,4820 3)) ((21,41126 2))*
7 z% + 323 4+ 322 4+ 3 z% + 23 + 322 4 20 41 go(x) ((14,4620 4))  ((21,4922,3))*
7 z4 + 323 + 322 + 3 z4 + 23 +322 + 204+ 1 go(x) ((14,4520 4))  ((21,4922, 3))*
9 o8 407 +325 125 424 1323 422 4o +3 o7 4306 + ot + 305 4 3241 go(a) _ ((27, 4622 3))*
9 o8 + 27 + 326 + 25 4+ 22 4323 + 22 + 2 +3 3 + 2z + 1 g2 (x) - (27,4424 2))*
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