[1] H. Abdollahzadeh Ahangar, M.P. ´Alvarez, M. Chellali, S.M. Sheikholeslami, and J.C. Valenzuela-Tripodoro, Triple Roman domination in graphs, Applied Math. Comput. 391 (2021), Article ID: 125444.
https://doi.org/10.1016/j.amc.2020.125444
[2] H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami, and J.C. Valenzuela-Tripodoro, Total Roman {2}-ominating functions in graphs, Discuss. Math. Graph Theory 42 (2022), no. 3, 937–958.
https://doi.org/10.7151/dmgt.2316
[4] J. Amjadi and H. Sadeghi, Triple Roman domination subdivision number in graphs., Comput. Sci. J. Moldova 30 (2022), no. 1, 109–130.
[7] K.S. Booth and G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976), no. 3, 335–379.
https://doi.org/10.1016/S0022-0000(76)80045-1
[9] M. Hajjari, H. Abdollahzadeh Ahangar, R. Khoeilar, Z. Shao, and S.M. Sheikholeslami, New bounds on the triple Roman domination number of graphs, J. Math. 2022 (2022), Artice ID: 9992618.
https://doi.org/10.1155/2022/9992618
[10] M. Hajjari, H. Abdollahzadeh Ahangar, R. Khoeilar, Z. Shao, and S.M. Sheikholeslami, An upper bound on triple Roman domination, Commun. Comb. Optim. 8 (2023), no. 3, 505–511.
https://doi.org/10.22049/cco.2022.27816.1359
[11] D.S. Johnson and M.R. Garey, Computers and intractability: A guide to the theory of NP-completeness, W.H. Freeman, New York, 1979.
[14] F. Nahani Pour, H. Abdollahzadeh Ahangar, M. Chellali, and S.M. Sheikholeslami, Global triple Roman dominating function, Discrete Appl. Math. 314 (2022), 228–237.
https://doi.org/10.1016/j.dam.2022.02.015