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Abstract: Given a graph G = (V,E), a function f : V → {0, 1, 2, 3, 4} is a triple

Roman dominating function (TRDF) of G, for each vertex v ∈ V , (i) if f(v) = 0,

then v must have either one neighbour in V4, or either two neighbours in V2 ∪ V3 (one
neighbour in V3) or either three neighbours in V2, (ii) if f(v) = 1, then v must have

either one neighbour in V3 ∪ V4 or either two neighbours in V2, and if f(v) = 2, then v

must have one neighbour in V2 ∪ V3 ∪ V4. The triple Roman domination number of G
is the minimum weight of an TRDF f of G, where the weight of f is

∑
v∈V f(v). The

triple Roman domination problem is to compute the triple Roman domination number

of a given graph. In this paper, we study the triple Roman domination problem. We
show that the problem is NP-complete for the star convex bipartite and the comb

convex bipartite graphs and is APX-complete for graphs of degree at most 4. We

propose a linear-time algorithm for computing the triple Roman domination number of
proper interval graphs. We also give an (2H(∆(G) + 1)− 1)-approximation algorithm

for solving the problem for any graph G, where ∆(G) is the maximum degree of G and

H(d) denotes the first d terms of the harmonic series. In addition, we prove that for any
ε > 0 there is no (1/4− ε) ln |V |-approximation polynomial-time algorithm for solving

the problem on bipartite and split graphs, unless NP ⊆ DTIME (|V |O(log log |V |)).

Keywords: Triple Roman domination, Approximation algorithm, NP-complete,

Proper interval graph, APX-complete

AMS Subject classification: 05C69

1. Introduction

Let G = (V,E) be a graph such that V denotes the vertex set of G and E denotes

the edge set of G. Let NG(v) = {u ∈ V : uv ∈ E}, NG[v] = NG(v) ∪ {v} and

degG(v) = |NG(v)|. A pendant vertex is a vertex with degree one. The maximum

degree of a graph G, denoted by ∆(G), is ∆(G) = max{degG(v) : v ∈ V }. A graph
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is complete if there is an edge between any pair of its vertices. The induced subgraph

G[S] for any S ⊆ V is the graph whose vertex set is S and edge set consists of all

edges in E that have both endpoints in S. A clique of G is a subset S ⊆ V such

that G[S] is a complete graph. A graph G = (V,E) is an intersection graph for a

family of nonempty sets F if each vertex in V is corresponding to a set in F and two

vertices are adjacent in G if and only if the intersection of their corresponding sets

in F is nonempty. An interval graph G = (V,E) is an intersection graph for a family

of intervals on the real line. A proper interval graph is an interval graph in which no

interval properly contains another. A tree is a connected graph with no cycles. A tree

T = (V,E) is called a star if |V | = 2 or |V | ≥ 3 and T contains exactly one vertex

that is not pendant and is called the central vertex of the star. A path is a tree with

exactly two pendant vertex and a comb graph is a tree that is obtained by attaching

a pendant vertex to each vertex of a path. A graph G = (V,E) is called a bipartite

graph if V can be partitioned into two subsets X and Y such that each edge in E

has one end in X and one end in Y , denoted by G = (X,Y,E). Let G = (X,Y,E)

be a bipartite graph. The graph G is a tree convex bipartite graph [12] if there is

a tree T = (X,F ) such that the induced subgraph T [NG(v)] is connected for each

vertex v ∈ Y . When T is a star (resp., comb), then G is a star (resp., comb) convex

bipartite graph. Let H(d) denote the first d terms of the harmonic series, that is,

H(d) =
∑d

i=1 1/i. Note that H(d) ≤ ln(d) + 1.

Given a graph G = (V,E) and a function f from V to {0, 1, . . . , t}, where t > 0 is

an integer, the weight of f , denoted by w(f), is equal to
∑

v∈V f(v). We denote f

by (V0, V1, . . . , Vk), where Vi = {v ∈ V : f(v) = i} for all 0 ≤ i ≤ t. A function

f : V → {0, 1, 2} is a Roman dominating function (RDF) of G, if each vertex v ∈ V
with f(v) = 0 is adjacent to a vertex u ∈ D with f(u) = 2. The Roman domination

number of G is the minimum weight of an RDF f of G. Beeler et al. [6] initiated the

study of double Roman dominating functions, a stronger version of Roman domination

functions. A double Roman dominating function (DRDF) of G is a function f : V →
{0, 1, 2, 3} such that for each v ∈ V :

1. with f(v) = 0, there is a vertex u ∈ NG(v) with f(u) = 3 or there are vertices

x, y ∈ NG(v) with f(x) = f(y) = 2, and

2. with f(v) = 1, there is a vertex u ∈ NG(v) with f(u) > 1.

The double Roman domination number of G is the minimum weight of an DRDF f

of G.

The double Roman domination of graphs has been studied in the literature, for exam-

ple [16, 17]. In 2019, Abdollahzadeh Ahangar et al. [1] introduced a generalization of

the DRDFs in which any undefended place could be defended from a sudden attack

with, at least, k legions without leaving any neighboring strong-city without military

forces.

We use the notation used in [1]. Let G = (V,E) be a graph and let f : V →
{0, 1, . . . , k + 1} for a given positive integer k. Given a vertex v ∈ V , the active

neighbourhood of v, denoted by AN(v), is the set of vertices w ∈ NG(v) such that
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f(w) ≥ 1 and let AN [v] = AN(v) ∪ {v}. The function f is a [k]-RDF, if for each

vertex v ∈ V with f(v) < k,

f(AN [v]) ≥ |AN(v)|+ k.

Denote the minimum weight of an [k]-RDF of G by γ[kR](G). Note that for k ∈ {1, 2}
the [k]-RDF definition matches that of the RDF and DRDF. Authors [1] focused their

attention to the triple Roman domination number (k = 3) case, so that for any vertex

v ∈ V with f(v) < 3, it must happen that f(AN [v]) ≥ |AN(v)|+ 3. More precisely,

for each vertex v ∈ V , the following conditions hold.

1. If h(v) = 0, then v must have either one neighbour in V4, or either two neigh-

bours in V2 ∪ V3 (one neighbour in V3) or either three neighbours in V2.

2. If h(v) = 1, then v must have either one neighbour in V3 ∪ V4 or either two

neighbours in V2.

3. If h(v) = 2, then v must have one neighbour in V2 ∪ V3 ∪ V4.

The triple Roman domination problem is to compute the triple Roman domination

number, the minimum weight of a triple Roman dominating function (TRDF), of a

given graph. Authors [1] proved that the triple Roman domination problem is NP-

complete for chordal graphs and bipartite graphs. Moreover, they showed that it is

possible to compute the triple Roman domination number of bounded clique-width

graphs in linear-time. Triple Roman domination has been studied by several authors

[2, 4, 9, 10, 14].

The organization of the paper as follows. In Section 2, we prove that the triple Ro-

man domination problem is NP-complete even for the star convex bipartite graphs

and the comb convex bipartite graphs. In Section 3, we propose a linear-time algo-

rithm for computing the triple Roman domination number of proper interval graphs.

In Section 4, we prove that for any ε > 0 there is no (1/4 − ε) ln |V |-approximation

polynomial-time algorithm for solving the triple Roman domination problem on bi-

partite and split graphs, unless NP ⊆ DTIME (|V |O(log log |V |)). In Section 5, we first

give an (2H(∆(G) + 1) − 1)–approximation algorithm for computing the triple Ro-

man domination number of graphs. Finally, APX-completeness of the triple Roman

domination problem for graphs of degree at most 4 is proven.

2. NP-complete results

In this section, we show that the decision version of triple Roman domination

problem is NP-complete even when restricted to the star convex bipartite graphs

and the comb convex bipartite graphs. For this purpose, we present polynomial-time

reductions from a well-known NP-complete problem, 3-SAT [11], to the triple Roman

domination problem. The 3-SAT problem and the decision version of triple Roman



220 Algorithmic complexity of triple Roman dominating functions

domination problem are defined as follows:

3-SAT

Instance: A boolean formula Φ in 3-conjunctive normal form.

Question: Is Φ satisfiable?

Let C = {c1, · · · , cl} be a set of l ≥ 1 clauses, let X = {x1, · · · , xk} be a set of k ≥ 3

variables and let [1, t] = {1, 2, . . . , t}, where t is a positive integer. Φ = {C,X} is

called an instance of 3-SAT if the clause cj , j ∈ [1, l], is of the form cj = {y1j , y2j , y3j}
such that each of y1j , y2j and y3j is either a variable or the negation of a variable in X.

Triple Roman Domination (TRD)

Instance: A graph G and a positive integer t.

Question: Is there an TRDF f of G with w(f) ≤ t?

Theorem 1. The TRD problem is NP-complete even for the star convex bipartite graphs.

Proof. Clearly, the TRD problem is in NP because for a given graph G, a positive

integer t and a function f onG we can check in polynomial-time whether f is an TRDF

of G with w(f) ≤ t. In the rest of the proof, we transfer an instance Φ = {C,X} of

the 3-SAT problem to an instance (GΦ, 8k) of the TRD problem. Let i ∈ [1, k] and

j ∈ [1, l].

• Add a path ufi uiu
t
i such that ui is adjacent to new pendants b1i , b

2
i , b

3
i , b

4
i and

both ufi and uti are adjacent to new vertices a1
i , a

2
i , a

3
i , a

4
i for each xi ∈ X.

• Add a vertex zj for each cj ∈ C.

• Add an edge utizj if xi ∈ cj for each cj ∈ C.

• Add an edge ufi zj if ¬xi ∈ cj , where ¬xi is the negation of xi, for each cj ∈ C.

• Add a new vertex o such that is adjacent to both uti and ufi for each i ∈ [1, k].

Let GΦ be the resulting graph. See Figure 1(a). The graph GΦ = (A,B,E) is a star

convex bipartite graph with an associated star tree T = (A,F ), see Figure 1(b), where

A = {o, zj , ui, a1
i , a

2
i , a

3
i , a

4
i : i ∈ [1, k], j ∈ [1, l]}, B = {ufi , uti, b1i , b2i , b3i , b4i : i ∈ [1, k]}

and F = {oy : y ∈ A \ {o}}.

Claim 1. The boolean formula Φ is satisfiable if and only if there is an TRDF f on

GΦ with w(f) ≤ 8k.

Proof of Claim. Assume that Φ is satisfiable. Let T be a truth assignment for

variables in X for which Φ evaluates to true. We construct sets V0 and V4 on the vertex

set of GΦ as follows. Initialize V0 to be {o, zj , a1
i , . . . , a

4
i , b

1
i , . . . , b

4
i : i ∈ [1, k], j ∈ [1, l]}
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Figure 1. (a) Constructing a star convex bipartite graph GΦ from a given instance Φ = {C,X} of
the 3-SAT problem, where X = {x1, x2, x3, x4}, C = {c1, c2, c3}, c1 = {x1,¬x2,¬x3}, c2 =
{¬x1, x2,¬x3} and c3 = {x2, x3,¬x4} and (b) an associated star tree with GΦ.

and V4 to be {ui : i ∈ [1, k]}. If T assigns the value false (resp., true) to xi, then we add

the vertex ufi (resp., uti) to V4 and uti (resp., ufi ) to V0. Function f = (V0, ∅, ∅, ∅, V4)

is an TRDF on GΦ with w(f) = 8k.

Conversely, let f = (V0, V1, V2, V3, V4) be an TRDF on GΦ with w(f) ≤ 8k.

We fix indices i and j, where 1 ≤ i ≤ k and 1 ≤ j ≤ l. It gets

that f(ui) +
∑4

s=1 f(bsi ) ≥ 4 and f(ufi ) + f(uti) +
∑4

s=1 f(asi ) ≥ 4 and so

Si = f(ufi ) + f(ui) + f(uti) +
∑4

s=1(f(asi ) + f(bsi )) ≥ 8. Since f is an TRDF on GΦ

with w(f) ≤ 8k, it obtains that Si = 8 and so f(o) = f(zj) = 0. This holds only when∑4
s=1(f(asi ) + f(bsi )) = 0, f(ui) = 4 and either f(ufi ) = 4 and f(uti) = 0 or f(ufi ) = 0

and f(uti) = 4. If f(ufi ) = 4 and f(uti) = 0 (resp., f(ufi ) = 0 and f(uti) = 4),

then we assign the value false (resp., true) to the variable xi. We claim that this

assignment satisfies Φ. Assume cj = {y1j , y2j , y3j}. By constructing GΦ, for each

s ∈ {1, 2, 3}, if ysj = xi, for some 1 ≤ i ≤ k, then zj is adjacent to uti and otherwise,

adjacent to ufi . Since f(zj) = f(o) = 0 and |NGΦ(zj)| = 3, f(y) = 4 for some

y ∈ NGΦ
(zj). Assume without loss of generality that the vertex y is corresponding

to y1j and y1j ∈ {xi,¬xi}, for some i ∈ [1, k], where ¬xi is the negation of xi. If

y1j = ¬xi (resp., y1j = xi), then f(ufi ) = 4 and f(uti) = 0 (resp., f(ufi ) = 0 and

f(uti) = 4) and so xi has the value false (resp., true). It causes to satisfy the clause

cj and so the boolean formula Φ is satisfiable. This completes the proof of the claim. �

We can compute GΦ in polynomial time with respect to the size of |X| and |C|. This

completes the proof of the theorem.

Theorem 2. The TRD problem is NP-complete even for the comb convex bipartite graphs.

Proof. We transfer an instance Φ = {C,X} of the 3-SAT problem to an instance

(HΦ, 8k) of the TRD problem as follows. Let i ∈ [1, k] and j ∈ [1, l].
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Figure 2. (a) Constructing a comb convex bipartite graph HΦ from a given instance Φ = {C,X}
of the 3-SAT problem, where X = {x1, x2, x3, x4}, C = {c1, c2, c3}, c1 = {x1,¬x2,¬x3},
c2 = {¬x1, x2,¬x3} and c3 = {x2, x3,¬x4}, (b) an associated comb tree with HΦ. Note that
some edges of HΦ are not drawn.

• Add a path ufi uiu
t
i such that ui is adjacent to new pendants b1i , b

2
i , b

3
i , b

4
i and

both ufi and uti are adjacent to new vertices a1
i , a

2
i , a

3
i , a

4
i for each xi ∈ X.

• Add a vertex zj for each cj ∈ C.

• Add an edge utizj if xi ∈ cj for each cj ∈ C.

• Add an edge ufi zj if ¬xi ∈ cj , where ¬xi is the negation of xi, for each cj ∈ C.

• Add new vertices u′i, z
′
j , d

1
i , d

2
i , d

3
i , d

4
i for each i ∈ [1, k] and j ∈ [1, l] such that

each of these vertices is adjacent to ufi and uti for all i ∈ [1, k].

Let HΦ be the resulting graph, see Figure 2(a), and let A =

{zj , z′j , ui, u′i, a1
i , a

2
i , a

3
i , a

4
i , d

1
i , d

2
i , d

3
i , d

4
i : i ∈ [1, k], j ∈ [1, l]} and B =

{ufi , uti, b1i , b2i , b3i , b4i : i ∈ [1, k]}. The graph HΦ = (A,B,E) is a comb convex

bipartite graph with an associated comb tree T = (A,F ), see Figure 2(b), where

T includes the path u′1 . . . u
′
kz
′
1 . . . z

′
ld

1
1d

2
1d

3
1d

4
1 . . . d

1
kd

2
kd

3
kd

4
k such that u′i is adjacent

to ui, z
′
j is adjacent to zj , and dsi is adjacent to asi for all i ∈ [1, k], j ∈ [1, l] and

s ∈ [1, 4]. Similar to Claim 1, we can obtain the following result.

Claim 2. The boolean formula Φ is satisfiable if and only if there is an TRDF f on

HΦ such that w(f) ≤ 8k.

Recall that the TRD problem is in NP. We can compute HΦ in polynomial time with

respect to the size of |X| and |C|. This completes the proof of the theorem.
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Algorithm 3.1: TRDNPIG(G, 1, . . . , n)

Input: A proper interval graph G = (V,E) with |V | = n such that (1, . . . , n) is a consecutive

ordering of vertices in V .

Output: The triple Roman domination number of G.
1 Compute MIN(1), . . . , MIN(n);

2 γ0
[3R]

(1)←∞; γ3
[3R]

(1)← 3; γ4
[3R]

(1)← 4; i← 1;

3 while i < n do

4 i← i+ 1;

5 v ← MIN(i);
6 γ0

[3R]
(i)← γ4

[3R]
(v);

7 γ3
[3R]

(i)← γ[3R](i+ 1) + 3;

8 γ4
[3R]

(i)← γ[3R](v − 1) + 4;

9 γ[3R](i)← min{γ0
[3R]

(i), γ3
[3R]

(i), γ4
[3R]

(i)};
10 end while

11 return γ[3R](n);

3. Proper interval graphs

In this section we propose a linear algorithm (Algorithm 3.1) for computing the triple

Roman domination number of a given proper interval graph. Let G be a graph of order

n. An ordering (v1, v2, . . . , vn) of vertices of G is a consecutive ordering if vivk ∈ E
for some 1 ≤ i < k ≤ n implies both vivj ∈ E and vjvk ∈ E for every i < j < k.

Theorem 3 ([13]). A graph G is a proper interval graph if and only if G has a consec-
utive ordering of its vertices.

Booth and Lueker [7] proposed a linear-time algorithm for testing whether a graph is

a proper interval graph, and give a consecutive ordering if the answer is positive. For

a given proper interval G = (V,E) of order n, let V = {1, . . . , n} and let 1 ≤ i ≤ j ≤ n
and a ∈ {0, 1, 2, 3, 4}.

• [i, j) = {i ≤ k < j},

• (i, j] = {i < k ≤ j},

• (i, j) = {i < k < j},

• G[i, j] = G[{i ≤ k ≤ j}],

• MIN(i) = minNG[i],

• γa[3R](i) = min{w(f) : f is an TRDF on G[1, i] with f(i) = a}.

To prove that Algorithm 3.1 works correctly we need the following results.

Proposition 1. Given a proper interval graph G = (V,E) with |V | = n and a consecutive
ordering (1, . . . , n) of vertices of G, let 1 ≤ i ≤ j ≤ n.
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n+ 1
n

MIN(n) MIN(n+ 1)

g : 4

f : 4

Figure 3. Illustrating an TRDF g on H such that g(n + 1) = 4 and an TRDF f on H[1, n] such that
f(n) = 4; note that some edges of H are not drawn.

(i) For all S ⊆ V , the induced subgraph G[S] is also a proper interval graph.

(ii) If ij ∈ E, then [i, j] is a clique of G.

(iii) MIN(i) ≤ MIN(j).

Lemma 1. Given a proper interval graph G = (V,E) with |V | = n and a consecutive
ordering (1, . . . , n) of vertices of G, γ4

[3R](1) ≤ γ4
[3R](2) ≤ · · · ≤ γ4

[3R](n).

Proof. The proof is by induction on n. Clearly, γ4
[3R](1) = γ4

[3R](2) = 4 and so the

claim holds for n = 2. Assume the claim holds for all proper interval graphs of order

n ≥ 2. Let H be a proper interval graph of order n + 1 with a consecutive ordering

(1, . . . , n + 1) of vertices of H. By Proposition 1, the induced subgraph H[1, n] is a

proper interval graph of order n and so

γ4
[3R](1) ≤ · · · ≤ γ4

[3R](n). (1)

Let g be an TRDF on H such that its weight is minimum and g(n + 1) = 4. So,

w(g) = γ4
[3R](n + 1). See Figure 3. By Proposition 1 and since H is connected,

MIN(n) ≤ MIN(n + 1) ≤ n and [MIN(n), n] is a clique of H. So, each vertex adjacent

to n+ 1 is also adjacent to n. Let f be a new function from [1, n] to [0, 4] as follows:

f(i) = g(i) for all i ∈ [1, n − 1] and f(n) = 4. Clearly, w(f) = w(g) − g(n), where

g(n) ∈ [0, 4], and so w(f) ≤ w(g). Since each vertex adjacent to n+1 is also adjacent to

n, f is an TRDF on H[1, n] such that f(n) = 4. Hence, γ4
[3R](n) ≤ w(f) ≤ γ4

[3R](n+1).

This, together with Inequality (1), completes the proof of the lemma.

Lemma 2. Given a proper interval graph G = (V,E) with |V | = n and a consecutive
ordering (1, . . . , n) of vertices of G, if i ∈ [2, n]; then γ0

[3R](i) = γ4
[3R](MIN(i)).

Proof. Let f = (V0, V1, V2, V3, V4) be an TRDF on G[1, i] such that its weight is

minimum and f(i) = 0. So, w(f) = γ0
[3R](i). Since f(i) = 0, the vertex i must have

either (i) one neighbour in V4, or either (ii) two neighbours in V2 ∪V3 (one neighbour

in V3) or either (iii) three neighbours in V2.
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i

MIN(a) MIN(i)

04

ib
MIN(a) MIN(i)

0
f :f :

(c)(a)

a

a

23

i
MIN(a) MIN(i)

0f :

(b)

22 2

g : 4 0 0 g : 004 0

Figure 4. Illustrating two TRDFs f and g on G[1, i]; note that some edges of G are not drawn.

We claim that Cases (ii) and (iii) do not occur. Assume that i has two neighbours in

V2∪V3 (one neighbour in V3), that is, f(a) = 3 and f(b) = 2 for some a, b ∈ [MIN(i), i).

We first consider the case that a < b. By Proposition 1, MIN(a) ≤ MIN(b) ≤ MIN(i)

and [MIN(x), x] is a clique of G for each vertex x. So, each vertex adjacent to both

vertices a, b is also adjacent to a. Let g be a new function on G[1, i] as g(k) = f(k)

for all k ∈ [1, i] \ {a, b}, g(a) = 4 and g(b) = 0. We get that g is an TRDF on G[1, i]

such that g(i) = 0 and w(g) < w(f), contradicting that f is an TRDF on G[1, i] such

that its weight is minimum and f(i) = 0. See Figure 4(a). Similarly, if b < a or i

has three neighbours in V2, then we can obtain a new TRDF g on G[1, i] such that

g(i) = 0 and w(g) < w(f), see Figure 4(b), a contradiction. This proves the claim.

Now, assume that i has one neighbour in V4. So, f(a) = 4 for some a ∈ [MIN(i), i).

See Figure 4(c). By Proposition 1, MIN(a) ≤ MIN(i) and [MIN(a), a] is a clique of G.

So, each vertex adjacent to i is also adjacent to a in the induced subgraph G[1, i]. Let

f ′ be the restriction of f to G[1, a]. We get that w(f ′) ≤ w(f) and f ′ is an TRDF

on G[1, a] such that f ′(a) = 4. Thus, γ4
[3R](a) ≤ w(f ′) ≤ w(f) = γ0

[3R](i). Since

MIN(i) ≤ a, by Lemma 1, γ4
[3R](MIN(i)) ≤ γ4

[3R](a) and so γ4
[3R](MIN(i)) ≤ γ0

[3R](i).

Conversely, let g be an TRDF on G[1, MIN(i)] such that its weight is minimum and

g(MIN(i)) = 4. So, w(g) = γ4
[3R](MIN(i)). Let h be a function on G[1, i] as h(k) = g(k)

for all k ∈ [1, MIN(i)] and h(j) = 0 for all j ∈ (MIN(i), i]. We have w(h) = w(g) =

γ4
[3R](MIN(i)). Because [MIN(i), i] is a clique of G, h is an TRDF on G[1, i] such that

h(i) = 0. Hence, γ0
[3R](i) ≤ w(h) = γ4

[3R](MIN(i)). This implies that γ0
[3R](i) =

γ4
[3R](MIN(i)) and completes the proof of the lemma.

Theorem 4 ([1]). For a given graph G, there exists an TRDF on G with minimum
weight that does not assign an 1 to any vertex in G.

Lemma 3. Given a proper interval graph G = (V,E) with |V | = n and a consecutive
ordering (1, . . . , n) of vertices of G, let i ∈ [2, n]; then

(i) γ0
[3R](i) ≤ γ2

[3R](i) and

(ii) γ3
[3R](i) = γ[3R](i− 1) + 3 or γ0

[3R](i) ≤ γ3
[3R](i).

Proof. We first prove (i). Let f = (V0, V1, V2, V3, V4) be an TRDF on G[1, i] such

that its weight is minimum and f(i) = 2, that is, w(f) = γ2
[3R](i). Since f(i) = 2,
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Figure 5. Illustrating two TRDFs f and g on G[1, i]; note that some edges of G are not drawn.

the vertex i has one neighbour j in V2 ∪ V3 ∪ V4, that is, j ∈ [MIN(i), i) such that

f(j) ≥ 2. See Figure 5(a). Let g be a new function on G[1, i] as g(x) = f(x) for all

x ∈ [1, i) \ {j}, g(j) = 4 and g(i) = 0. We obtain that g is an TRDF on G[1, i] such

that g(i) = 0 and w(g) ≤ w(f). Thus, γ0
[3R](i) ≤ w(g) ≤ γ2

[3R](i). This completes the

proof of (i).

Now, we prove (ii). Let f = (V0, V1, V2, V3, V4) be an TRDF on G[1, i] such that its

weight is minimum and f(i) = 3, that is, w(f) = γ3
[3R](i). We distinguish two cases

depending on whether f(x) ≥ 1 for some x ∈ [MIN(i), i).

Case 1. Assume f(j) ≥ 1 for some j ∈ [MIN(i), i). Let g be a new function on

G[1, i] as g(x) = f(x) for all x ∈ [1, i) \ {j}, g(j) = 4 and g(i) = 0. See Figure 5(b).

We see that g is an TRDF on G[1, i] such that g(i) = 0 and w(g) ≤ w(f). Hence,

γ0
[3R](i) ≤ w(g) ≤ γ3

[3R](i).

Case 2. Assume that f(x) = 0 for all x ∈ [MIN(i), i). We have MIN(i) < i and so

f(i−1) = 0. Since f is an TRDF on G[1, i], f(j) ≥ 2 for some j ∈ [MIN(i−1), MIN(i))

and so MIN(i− 1) < MIN(i).

• Assume that f(j) = 2. Since f is an TRDF on G[1, i], the vertex j has one

neighbour k in V2 ∪ V3 ∪ V4.

If f(k) ≥ 3, then let g be a new function on G[1, i] as g(x) = f(x) for all

x ∈ [1, i) \ {k, j, MIN(i)}, g(k) = g(MIN(i)) = 4 and g(j) = g(i) = 0. See

Figure 5(c). We get that g is an TRDF on G[1, i] such that g(i) = 0 and

w(g) ≤ w(f). Thus, γ0
[3R](i) ≤ γ

3
[3R](i).

Now, assume that f(k) = 2. Let l be a vertex such that f(l) ≥ 2, l < k,

and f(x) ≤ 1 for all x ∈ (l, k), that is, l = max{x < k : f(x) ≥ 2}. (If such

vertex does not exist, then we obtain that k = 1 and j = 2 = MIN(i − 1) and

γ0
[3R](i) ≤ γ3

[3R](i).) We construct a new function g on G[1, i] as g(x) = f(x)

for all x ∈ [1, i) \ {l, j, MIN(i)}, g(l) = 3, g(j) = g(i) = 0, and g(MIN(i)) = 4.

See Figure 5(d). We get that g is an TRDF on G[1, i] such that g(i) = 0 and

w(g) ≤ w(f). Hence, γ0
[3R](i) ≤ γ

3
[3R](i).

• Assume that f(j) = 3. Let k be a vertex such that f(k) ≥ 2, k < j, and

f(x) ≤ 1 for all x ∈ (k, j), that is, k = max{x < j : f(x) ≥ 2}. (If such
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Figure 6. Illustrating an TRDF f on G[1, i] with f(i) = f(j) = 2 such that j is adjacent to i; note that
some edges of G are not drawn.

vertex does not exist, then we obtain that j = 1 = MIN(i − 1) and γ0
[3R](i) ≤

γ3
[3R](i).) We construct a new function g on G[1, i] as g(x) = f(x) for all

x ∈ [1, i) \ {k, j, MIN(i)}, g(k) = 3, g(j) = 2, g(MIN(i)) = 4, and g(i) = 0.

See Figure 6(a). We get that g is an TRDF on G[1, i] such that g(i) = 0 and

w(g) ≤ w(f). Thus, γ0
[3R](i) ≤ γ

3
[3R](i).

• Assume that f(j) = 4. See Figure 6(b). Let f ′ be the restriction of f to

G[1, i − 1]. Since f ′(j) = 4, we see that f ′ is an TRDF on G[1, i − 1]. So,

γ[3R](i− 1) ≤ w(f ′) = w(f)− 3 = γ3
[3R](i)− 3. Conversely, assume that g is an

TRDF on G[1, i− 1] such that its weight is minimum. So, w(g) = γ[3R](i− 1).

Let h = g ∪ {(i, 3)}. We get that h is an TRDF on G[1, i] such that h(i) = 3.

Hence, γ3
[3R](i) ≤ w(h) = w(g) + 3 = γ[3R](i − 1) + 3. This, together with

γ[3R](i− 1) ≤ γ3
[3R](i)− 3, implies γ3

[3R](i) = γ[3R](i− 1) + 3.

This completes the proof of (ii) and so the proof of the lemma.

Lemma 4. Given a proper interval graph G = (V,E) with |V | = n and a consecutive
ordering (1, . . . , n) of vertices of G, let i ∈ [2, n]. If MIN(i) ≥ 2, then γ4

[3R](i) = γ[3R](MIN(i)−
1) + 4, otherwise, γ4

[3R](i) = 4.

Proof. If MIN(i) = 1, that is, [1, i] is a clique ofG, then clearly γ4
[3R](i) = 4. Note that

i ≥ 2. In the rest of the proof, we assume that MIN(i) ≥ 2. Let f = (V0, V1, V2, V3, V4)

be an TRDF on G[1, i] such that its weight is minimum and f(i) = 4, that is, w(f) =

γ4
[3R](i). Clearly, f(x) 6= 1 for all x ∈ [min(i), i). If f(u), f(v) ≥ 2 for some u, v ∈

[min(i), i) with u < v, then let g be a new function on G[1, i] as g(x) = f(x) for

all x ∈ [1, i] \ {u, v}, g(u) = 4 and g(v) = 0. We get that g is an TRDF on G[1, i]

such that g(i) = 4 and w(g) ≤ w(f). See Figure 7(a). If f(u) ≥ 2 for exactly one

vertex u ∈ [min(i), i), then let g be a new function on G[1, i] as g(x) = f(x) for all

x ∈ [1, i] \ {min(i) − 1, u}, g(min(i) − 1) = f(u) and g(u) = 0. We get that g is an

TRDF on G[1, i] such that g(i) = 4 and w(g) ≤ w(f). See Figure 7(b). So, in the

rest of the proof, we assume that f(u) = 0 for all u ∈ [min(i), i).
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Figure 7. Illustrating two TRDFs f and g on G[1, i]; note that some edges of G are not drawn.

Let f ′ be the restriction of f to G[1, min(i)). We see that f ′ is an TRDF on

G[1, min(i)). So, γ[3R](min(i) − 1) ≤ w(f ′) = w(f) − 4 = γ4
[3R](i) − 4. Conversely,

assume that g is an TRDF on G[1, min(i)) such that its weight is minimum, that

is, w(g) = γ[3R](min(i) − 1). Let h be a function on G[1, i] as h(x) = g(x) for all

x ∈ [1, min(i)), h(y) = 0 for all y ∈ [min(i), i) and h(i) = 4. We see that h is

an TRDF on G[1, i] such that h(i) = 4. Hence, γ4
[3R](i) ≤ w(h) = w(g) + 4 =

γ[3R](min(i)− 1) + 4.

Theorem 5. Given a proper interval graph G = (V,E) with |V | = n and a consecutive
ordering (1, . . . , n) of vertices of G, Algorithm 3.1 computes γ[3R](G) in O(n) time.

Proof. Let i ∈ [2, n]. By Theorem 4, let f = (V0, ∅, V2, V3, V4) be an TRDF on

G[1, i] such that its weight is minimum. So, w(f) = γ[3R](G[1, i]). Clearly, f(i) ∈
{0, 2, 3, 4} and so γ[3R](G[1, i]) = γ[3R](i) = min{γ0

[3R](i), γ
2
[3R](i), γ

3
[3R](i), γ

4
[3R](i)}.

By Lemma 3, γ[3R](i) = min{γ0
[3R](i), γ

3
[3R](i), γ

4
[3R](i)}. It obtains that γ0

[3R](1) is

not defined, γ3
[3R](1) = 3 and γ4

[3R](1) = 4. By Lemmas 2, 3 and 4, the output of

Algorithm 3.1 on input (G, 1, . . . , n) is γ3
[3R](G). It follows from (Algorithm 2 of) [5]

that we can compute all values MIN(1), . . . , MIN(n) in O(n) time. So, it deduces that

the running time of Algorithm 3.1 is O(n).

4. Lower bound on the approximation ratio

In this section, a lower bound on the approximation factor of the triple Roman domi-

nation problem is established. Before we give our lower bound on the approximation

factor of the triple Roman domination problem, we have to introduce the Min Dom

Set and the Min Triple Roman Dom Function problems, formalized as follows.

Min Dom Set

Instance: A graph G = (V,E).

Solution: A DS S of G, where a subset S ⊆ V is called a dominating set (DS) of G
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Algorithm 4.1: B

Input: A graph G = (V,E).

Output: An DS of G.

1 Compute an TRDF f = (V0, V1, V2, V3, V4) of G using algorithm A;
2 D = V1 ∪ V2 ∪ V3 ∪ V4;

3 return D;

if each vertex not in S is adjacent to one vertex of S.

Measure: |S|.

Min Triple Roman Dom Function

Instance: A graph G = (V,E).

Solution: An TRDF f of G.

Measure: w(f).

Theorem 6 ([8]). For a given bipartite or split graph G = (V,E), there is no (1 −
ε) ln |V |-approximation polynomial-time algorithm for any ε > 0 to solve the Min Dom Set
problem, unless NP ⊆ DTIME (|V |O(log log |V |)).

Theorem 7 ([1]). For a given graph G, 2γ(G) ≤ γ[3R](G) ≤ 4γ(G).

Theorem 8. For a given bipartite or split graph G = (V,E), there is no (1/4− ε) ln |V |-
approximation polynomial-time algorithm for any ε > 0 to solve the Min Triple Roman
Dom Function problem, unless NP ⊆ DTIME (|V |O(log log |V |)).

Proof. Assume there is an algorithm A that can approximate within ratio α > 0 the

Min Triple Roman Dom Function problem. Let f∗ be an TRDF of G such that

w(f∗) = γ[3R](G) and let D∗ be an DS of G such that |D∗| = γ(G). By Theorem 7,

2γ(G) ≤ γ[3R](G) ≤ 4γ(G) and so w(f∗) ≤ 4|D∗|. Algorithm 4.1 on input G returns

an DS D of G such that |D| = |V1|+ |V2|+ |V3|+ |V4| ≤ |V1|+ 2|V2|+ 3|V3|+ 4|V4| =
w(f) ≤ α × w(f∗) ≤ 4α|D∗|. Thus, Algorithm 4.1 can approximate the Min Dom

Set problem within the ratio 4α. Assume that there is some fixed ε > 0 such that

can approximate the Min Triple Roman Dom Function problem within ratio

α = (1/4 − ε) ln |V | using algorithm A. Then, the Min Dom Set problem can be

approximated within ratio (1− ε′) ln |V | by Algorithm 4.1, where ε′ = 4ε, which is a

contradiction to Theorem 6. This completes the proof of the theorem.

5. An approximation algorithm and APX-Completeness

In this section, we first give an approximation algorithm for computing the triple Ro-

man domination number of graphs. Next, we prove that the triple Roman domination
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problem is APX-complete for graphs of degree at most 4. To present an approxima-

tion algorithm for computing the triple Roman domination number of graphs, we

need the following results.

Theorem 9 ([8]). There is an (H(∆(G) + 1)− 1/2)-approximation algorithm for com-
puting a minimum DS of any given graph G, where H(d) =

∑d
i=1 1/i.

Theorem 10. For a given graph G = (V,E), there is an (2H(∆(G) + 1) − 1)-
approximation algorithm for computing an TRDF of G with minimum weight.

Proof. By Theorem 9, let A be an approximation algorithm that computes an DS

of G and let D be the output of Algorithm A on input A. So, |D| ≤ (H(∆(G) +

1)− 1/2)|D∗|, where D∗ is a minimum DS of G. Assume that f = (V \D, ∅, ∅, ∅, D).

We get that f is an TRDF of G such that w(f) = 4|D|. Thus, w(f) ≤ 4(H(∆(G) +

1) − 1/2)|D∗|. Let f∗ be an TRDF of G such that w(f∗) = γ[3R](G). Hence, by

Theorem 7, w(f) ≤ 4(H(∆(G) + 1)− 1/2)|D∗| ≤ 2(H(∆(G) + 1)− 1/2)w(f∗). This

completes the proof of the theorem.

To show that the triple Roman domination problem is APX-complete, we use the

L-reduction notation, see [3, 15]. Let F and G be two NP optimization problems. An

L-reduction is a polynomial time transformation h from instances of F to instances

of G, if for some positive constants α and β and each instance x of F

1. OPTG(h(x)) ≤ α · OPTF (x), and

2. we can find a solution y′ of x with mF (x, y′) = c1 in polynomial time such that

|OPTF (x)− c1| ≤ β|OPTG(h(x))− c2| for every feasible solution y of h(x) with

objective value mG(h(x), y) = c2.

To prove that a problem P ∈ APX is APX-complete, we need to give an L-reduction

from some APX-complete problem to P . We formalize the considered problems as

follows.

Min Dom Set-B

Instance: A graph G = (V,E) with degree at most B.

Solution: A DS D of G.

Measure: |D|.

Min Triple Roman Dom Function-B

Instance: A graph G = (V,E) with degree at most B.

Solution: A TRDF f of G.

Measure: w(f).

Theorem 11 ([3]). Min Dom Set-3 is APX-complete.
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Theorem 12. Min Triple Roman Dom Function-4 is APX-complete.

Proof. By Theorem 10, Min Triple Roman Dom Function-4 is in APX and

by Theorem 11, Min Dom Set-3 is APX-complete. It is enough to construct an L-

reduction h from Min Dom Set-3 to Min Triple Roman Dom Function-4. Let

G′ = (V ′, E′) be a graph constructed from a given graph G = (V,E) with degree at

most 3 as V ′ = V ∪{av : v ∈ V } and E′ = E∪{vav : v ∈ V }. We get that G′ is a graph

with degree at most 4. For a given DS D of G, let f = (V0, V1 = ∅, V2 = ∅, V3, V4),

where V4 = D, V3 = {av : v ∈ V \ D}, and V0 = V ′ \ (V3 ∪ V4). We get that

w(f) = 3|V3| + 4|V4| = 3(|V | − |D|) + 4|D| = |D| + 3|V |. Since each vertex in V0 is

adjacent to a vertex in V4 and V1 = V2 = ∅, the function f is an TRDF of G′ such

that w(f) ≤ |D| + 3|V |. In particular, w(f∗) ≤ |D∗| + 3|V |, where D∗ is an DS of

G with |D∗| = γ(G) and f∗ is an TRDF of G′ with w(f∗) = γ[3R](G
′). Since G is a

graph with degree at most 3 and D∗ is an DS of G, |V | ≤
∑

v∈D∗(dG(v)+1) ≤ 4|D∗|.
Hence, w(f∗) ≤ |D∗|+ 3|V | ≤ |D∗|+ 12|D∗| = 13|D∗|.
Conversely, let g be an TRDF of G′. Assume that for some v ∈ V , we have either

g(av) = 4, or either g(av) = 3 and g(v) ≥ 1, or either g(av) ∈ {1, 2}. We obtain that

g(av)+g(v) ≥ 4. Let g′ = (V ′0 , V
′
1 , V

′
2 , V

′
3 , V

′
4) be a new function of G′ such that for all

v ∈ V if either g(av) = 4, or either g(av) = 3 and g(v) ≥ 1, or either g(av) ∈ {1, 2},
then g′(av) = 0 and g′(v) = 4, otherwise, g′(v) = g(v) and g′(av) = g(av). We

obtain that g′ is an TRDF of G′ such that w(g′) ≤ w(g), g′(av) ∈ {0, 3} for all

v ∈ V , and if g′(av) = 3 for some v ∈ V , then g′(v) = 0. Hence, |V ′1 | = |V ′2 | = 0,

|V ′3 |+ |V ′4 | = |V |, and V ′4 ⊆ V and so w(g′) = 3|V ′3 |+ 4|V ′4 | = 3|V |+ |V ′4 |. Since each

vertex v ∈ V ′0 ∩ V is adjacent to a vertex in S = V ′4 , the set S is an DS of G such

that |S| = |V ′4 | = w(g′)− 3|V | ≤ w(g)− 3|V |. In particular, |D∗| ≤ w(f∗)− 3|V | and

so w(f∗) = |D∗|+ 3|V |. We obtain that |S| − |D∗| ≤ w(g)− 3|V | − (w(f∗)− 3|V |) =

w(g)− w(f∗). As a result, h is an L-reduction such that α = 13 and β = 1.
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