[3] R.A. Beezer, Sage for linear algebra a supplement to a first course in linear algebra, Sage web site http://www.sagemath.org (2011).
[6] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), no. 1, 247–256.
https://doi.org/10.2307/1995785
[10] L. Cui and J.X. Zhou, A classification of tetravalent half-arc-transitive metacirculants of 2-power orders, Appl. Math. Comput. 392 (2021), Article ID: 125755.
https://doi.org/10.1016/j.amc.2020.125755
[11] S.F. Du and M.Y. Xu, Vertex-primitive 1/2-arc-transitive graphs of smallest order, Commun. Algebra 27 (1999), 163–171.
[14] Y.Q. Feng, J.H. Kwak, and C. Zhou, Constructing even radius tightly attached half-arc-transitive graphs of valency four, J. Algebraic Combin. 26 (2007), no. 4, 431–451.
https://doi.org/10.1007/s10801-007-0064-5
[17] D. Gorenstein, Finite simple groups, Plenum, New York, 1982.
[21] K. Kutnar, D. Marušič, and P. Šparl, An infinite family of half-arc-transitive graphs with universal reachability relation, European J. Combin. 31 (2010), no. 7, 1725–1734.
https://doi.org/10.1016/j.ejc.2010.03.006
[22] K. Kutnar, D. Marušič, P. Šparl, R.J. Wang, and M.Y. Xu, Classification of half-arc-transitive graphs of order $4p$, European J. Combin. 34 (2013), no. 7, 1158–1176.
https://doi.org/10.1016/j.ejc.2013.04.004
[26] D. Marušič and C.E. Praeger, Tetravalent graphs admitting half-transitive group actions: alternating cycles, J. Combin. Theory, Ser. B 75 (1999), no. 2, 188–205.
https://doi.org/10.1006/jctb.1998.1875
[29] W.T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.
[32] X. Wang, Y. Feng, J. Zhou, J. Wang, and Q. Ma, Tetravalent half-arc-transitive graphs of order a product of three primes, Discrete Math. 339 (2016), no. 5, 1566–1573.
https://doi.org/10.1016/j.disc.2015.12.022
[34] X. Wang and Y.Q. Feng, There exists no tetravalent half-arc-transitive graph of order $2p^2$, Discrete Math. 310 (2010), no. 12, 1721–1724.