[1] B.D. Acharya, Domination and absorbance in signed graphs and digraphs. I: Foundations, J. Combin. Math. Combin. Comput. 84 (2013), 5–20.
[2] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016), 23–29.
[3] D. Cartwright and F. Harary, Structural balance: A generalization of Heider’s theory, Psychological Review 63 (1956), 277–293.
[4] M. Chellali, T.W. Haynes, S.T. Hedetniemi, and A. McRae, Roman {2}-domination, Discrete Appl. Math. 204 (2016), 22–28.
[5] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
[6] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953), no. 2, 143–146.
[7] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire–A new strategy, Discrete Math. 266 (2003), no. 6, 239–251.
[8] P. Jeyalakshmi, Domination in signed graphs, Discrete Math. Algorithms Appl. 13 (2020), no. 1, ID: 2050094.
[9] J. Joseph and M. Joseph, Roman domination in signed graphs, Commun. Comb. Optim. (In press).
[10] D.A. Mojdeh and L. Volkmann, Roman {3}-domination(double Italian domination), Discrete Appl. Math. 283 (2020), 555–564.
[11] I. Stewart, Defend the Roman Empire!, Scientific American 281 (1999), no. 6, 136–139.
[12] D. B. West, Introduction to Graph Theory, Prentice-Hall of India, 1999.
[13] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electro. J. Combin. 25 (2018), # DS8.