[1] H.-J. Bandelt and V. Chepoi, Decomposition and l1-embedding of weakly median graphs, European J. Combin. 21 (2000), no. 6, 701–714.
[2] B. Breser, M. Changat, H.M. Mulder, and . Novic, Prefiber transit function on graphs, (in preparation).
[3] M. Changat, H.M. Mulder, and G. Sierksma, Convexities related to path properties on graphs, Discrete Math. 290 (2005), no. 2-3, 117–131.
[4] M. Changat, F.H. Nezhad, H. Mulder, and N. Narayanan, A note on the interval function of a disconnected graph, Discuss. Mathe. Graph Theory 38 (2018), no. 1, 39–48.
[5] M. Changat, G.N. Prasanth, and J. Mathews, Triangle path transit functions, betweenness and pseudo-modular graphs, Discrete Math. 309 (2009), no. 6, 1575–1583.
[6] V. Chepoi, Separation of two convex sets in convexity structures, J. Geom. 50 (1994), no. 1, 30–51.
[7] V.D. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, Cybernetics 24 (1988), no. 1, 6–11.
[8] H.M. Mulder, The interval function of a graph, MC Tract 132, Mathematisch Centrum, Amsterdam, 1980.
[9] H.M. Mulder, Transit functions on graphs (and posets), Convexity in Discrete Structures, Lecture Notes Ser. 5 (M. Changat, S. KlavĖzar, H.M. Mulder, and A. Vijayakumar, eds.), Ramanujan Math. Soc., 2008, pp. 117–130.
[10] H.M. Mulder and L. Nebesk`y, Axiomatic characterization of the interval function of a graph, European J. Combin. 30 (2009), no. 5, 1172–1185.
[11] L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44 (1994), no. 1, 173–178.
[12] L. Nebeský, A characterization of the set of all shortest paths in a connected graph,
Math. Bohem. 119 (1994), no. 1, 15–20.
[13] L. Nebeský, A characterization of geodetic graphs, Czechoslovak Math. J. 45 (1995), no. 3, 491–493.
[14] L. Nebeský, Characterizing the interval function of a connected graph, Math. Bohem. 123 (1998), no. 2, 137–44.
[15] L. Nebeský, A new proof of a characterization of the set of all geodesics in a connected graph, Czechoslovak Math. J. 48 (1998), no. 4, 809–813.
[16] L. Nebeský, A characterization of the interval function of a (finite or infinite) connected graph, Czechoslovak Math. J. 51 (2001), no. 3, 635–642.
[17] N. Polat, Netlike partial cubes I. general properties, Discrete Math. 307 (2007), no. 22, 2704–2722.