[1] S. Arumugam, M. Miller, O. Phanalasy, and J. Ryan, Antimagic labeling of generalized pyramid graphs, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 2, 283–290.
[2] M. Bača, O. Phanalasy, J. Ryan, and A. Semaničová-Feňovčíková, Antimagic labelings of join graphs, Math. Comput. Sci. 9 (2015), no. 2, 139–143.
[3] D. Buset, M. Miller, O. Phanalasy, and J. Ryan, Antimagicness for a family of generalized antiprism graphs, Electron. J. Graph Theory Appl. 2 (2014), no. 1, 42–51.
[4] Y. Cheng, Lattice grids and prisms are antimagic, Theoret. Comput. Sci. 374 (2007), no. 1-3, 66–73.
[5] J.A. Gallian, A dynamic survey of graph labeling, Electro. J. Combin. 1 (2020), no. Dynamic Surveys.
[6] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction, San Diego, CA: Academic Press, 1990.
[7] P.C.B. Li, Antimagic labelings of power of cycles graphs, Department of Computer Science, University of Manitoba, Canada, 2011.
[8] O. Phanalasy, M. Miller, C.S. Iliopoulos, S.P. Pissis, and E. Vaezpour, Construction of antimagic labeling for the Cartesian product of regular graphs, Math. Comput. Sci. 5 (2011), no. 1, 81–87.
[9] T. Wang, M.J. Liu, and D.M. Li, A class of antimagic join graphs, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 5, 1019–1026.
[10] T.-M. Wang, Toroidal grids are anti-magic, International Computing and Combinatorics Conference, Springer, 2005, pp. 671–679.
[11] Y. Zhang and X. Sun, The antimagicness of the Cartesian product of graphs, Theoret. Comput. Sci. 410 (2009), no. 8-10, 727–735.