[1] M. Ahmane, I. Bouchemakh, and E. Sopena, On the broadcast independence number of caterpillars, Discrete Appl. Math. 244 (2018), 20–35.
[2] S. Bessy and D. Rautenbach, Algorithmic aspects of broadcast independence, arXiv 1809.07248.
[3] S. Bessy and D. Rautenbach, Relating broadcast independence and independence, Manuscript 2018.
[4] I. Bouchemakh and M. Zemir, On the broadcast independence number of grid graph, Graphs Combin. 30 (2014), no. 1, 83–100.
[5] R. Diestel, Graduate Texts in Mathematics, Springer-Verlag New York, Incorporated, 2000.
[6] J.E. Dunbar, D.J. Erwin, T.W. Haynes, S.M. Hedetniemi, and S.T. Hedetniemi, Broadcasts in graphs, Discrete Appl. Math. 154 (2006), no. 1, 59–75.
[7] P. ErdÅ‘s, Graph theory and probability II, Canad. J. Math. 13 (1961), 346–352.
[8] D.J. Erwin, Cost domination in graphs, (Ph.D. thesis), Western Michigan University, 2001.
[9] F. Joos and D. Rautenbach, Equality of distance packing numbers, Discrete Math. 338 (2015), no. 12, 2374–2377.
[10] J. Topp and L. Volkmann, On packing and covering numbers of graphs, Discrete Math. 96 (1991), no. 3, 229–238.