[1] S. Bakhteh, A. Ghaffari-Hadigheh, and N. Chaparzadeh, Identification of minimum set of master regulatory genes in gene regulatory networks, IEEE/ACM Trans. Comput. Biol. Bioinform. 17 (2018), no. 3, 999–1009.
https://doi.org/10.1109/TCBB.2018.2875692
[2] A.L. Barabási, N. Gulbahce, and J. Loscalzo, Network medicine: a network-based approach to human disease, Nat. Rev. Genet. 12 (2011), no. 1, 56–68.
https://doi.org/10.1038/nrg2918
[3] A. Barrat, M. Barthelemy, and A. Vespignani, The architecture of complex weighted networks: Measurements and models, Large scale structure and dynamics of complex networks: from information technology to finance and natural
science, World Scientific, 2007, pp. 67–92.
[4] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, Multiple object tracking using k-shortest paths optimization, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011), no. 9, 1806–1819.
https://doi.org/10.1109/TPAMI.2011.21
[5] K. Bernhard and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 2008.
[6] Jørgen B.J. and G. Gregory, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
[7] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, vol. 290, Citeseer, 1976.
[8] S.P. Borgatti, Centrality and AIDS, Connections 18 (1995), no. 1, 111–113.
[9] R. Cordone and G. Lulli, An integer optimization approach for reverse engineering of gene regulatory networks, Discrete Appl. Math. 161 (2013), no. 4-5, 580–592.
https://doi.org/10.1016/j.dam.2012.02.010
[10] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959), 269–271.
[11] H. Eiselt and V. Marianov, Foundations of Location Analysis, vol. 155, Springer science & business media, 2011.
[12] F. Emmert-Streib, M. Dehmer, and B. Haibe-Kains, Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks, Front. Cell Dev. Biol. 2 (2014), Article ID: 38
https://doi.org/10.3389/fcell.2014.00038
[13] B.L. Fox, th shortest paths and applications to the probabilistic networks, ORSA/TIMS Joint National Mtg. 23 (1975), Artice ID: B263.
[14] C. Frank and K. Römer, Distributed facility location algorithms for flexible configuration of wireless sensor networks, Distributed Computing in Sensor Systems (Berlin, Heidelberg) (J. Aspnes, C. Scheideler, A. Arora, and S. Madden, eds.),
Springer Berlin Heidelberg, 2007, pp. 124–141.
[16] M. Hamed, C. Spaniol, A. Zapp, and V. Helms, Integrative network-based approach identifies key genetic elements in breast invasive carcinoma, BMC Genomics 16 (2015), no. 5, 1–14.
https://doi.org/10.1186/1471-2164-16-S5-S2
[17] B.H. Junker and F. Schreiber Falk, Analysis of Biological Networks, John wiley & sons, 2011.
[18] H. Kitano, A robustness-based approach to systems-oriented drug design, Nat. Rev. Drug Discov. 6 (2007), no. 3, 202–210.
https://doi.org/10.1038/nrd2195
[20] I. A. Kovács and A. L. Barabási, Network science: Destruction perfected, Nature 524 (2015), 38–39.
[21] N. Lazic, I. Givoni, B. Frey, and P. Aarabi, Floss: Facility location for subspace segmentation, 2009 ieee 12th international conference on computer vision, IEEE, 2009, pp. 825–832.
[22] H. Li, Two-view motion segmentation from linear programming relaxation, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.
[23] Y. Lim and H. Kim, A shortest path algorithm for real road network based on path overlap, J. East Asia Soc. Transp. Stud. 6 (2005), 1426–1438.
https://doi.org/10.11175/easts.6.1426
[26] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox, Springer Science & Business Media, 2008.
[29] J.C. Nacher and T. Akutsu, Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control, New J. Phys. 14 (2012), no. 7, Article ID: 073005.
https://doi.org/10.1088/1367–2630/14/7/073005
[30] J.C. Nacher and T. Akutsu, Structural controllability of unidirectional bipartite networks, Sci. Rep. 3 (2013), no. 1, Article ID: 1647.
https://doi.org/10.1038/srep01647
[31] M. Nazarieh, A. Wiese, T. Will, M. Hamed, and V. Helms, Identification of key player genes in gene regulatory networks, BMC Syst. Biol. 10 (2016), no. 1, Article ID: 88.
https://doi.org/10.1186/s12918-016-0329-5
[32] S. Ohno, Major Sex-Determining Genes, Springer-Verlag, Berlin, Germany, 1979.
[33] T. Opsahl, F. Agneessens, and J. Skvoretz, Node centrality in weighted networks: Generalizing degree and shortest paths, Soc. Netw. 32 (2010), no. 3, 245–251.
[35] D. Warde-Farley, S.L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, and Christian T. Lopes, The genemania prediction server: biological network integration for gene prioritization and predicting gene
function, Nucleic Acids Res. 38 (2010), no. suppl 2, W214–W220.
https://doi.org/10.1093/nar/gkq537
[37] J.Y. Yen, Finding the k shortest loopless paths in a network, Mgmt. Sci. 17 (1971), no. 11, 712–716.
[38] X.F. Zhang, L. Ou-Yang, D.Q. Dai, M.Y. Wu, Y. Zhu, and H. Yan, Comparative analysis of housekeeping and tissue-specific driver nodes in human protein interaction networks, BMC Bioinform. 17 (2016), no. 1, Article ID: 358.
https://doi.org/10.1186/s12859-016-1233-0
[39] X.F. Zhang, L. Ou-Yang, Y. Zhu, M.Yu. Wu, and D.Q. Dai, Determining minimum set of driver nodes in protein-protein interaction networks, BMC Bioinform. 16 (2015), no. 1, Article ID: 146.
https://doi.org/10.1186/s12859-015-0591-3