[1] E. Afrashteh, B. Alizadeh, and F. Baroughi, Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks, Ann. Oper. Res. 289 (2020), no. 2, 153–172.
https://doi.org/10.1007/s10479-020-03561-4
[2] H. Aissi, C. Bazgan, and D. Vanderpooten, Min–max and min–max regret versions of combinatorial optimization problems: A survey, European J. Oper. Res. 197 (2009), no. 2, 427–438.
https://doi.org/10.1016/j.ejor.2008.09.012
[3] L.Q. Anh, H.M. Le, K.T. Nguyen, and L.X. Thanh, An algorithmic approach to the robust downgrading makespan scheduling problem, Appl. Set-Valued Anal. Optim 6 (2024), no. 3, 263–273.
https://doi.org/10.23952/asvao.6.2024.3.02
[6] M. Baldomero-Naranjo, J. Kalcsics, A. Mar´ın, and A.M. Rodríguez-Chía, Upgrading edges in the maximal covering location problem, European J. Oper. Res. 303 (2022), no. 1, 14–36.
https://doi.org/10.1016/j.ejor.2022.02.001
[7] A. Ben-Tal, L.E. Ghaoui, and A. Nemirovski, Robust Optimization, Princeton University Press, Princeton, New Jersey, 2009.
[8] P. Brucker, Scheduling Algorithms (fifth edition), Springer Verlag, Heidelberg, 2007.
[9] Rainer E Burkard, Bettina Klinz, and Jianzhong Zhang, Bottleneck capacity expansion problems with general budget constraints, RAIRO Oper. Res. 35 (2001), no. 1, 1–20.
https://doi.org/10.1051/ro:2001100
[11] K.U. Drangmeister, S.O. Krurnke, M.V. Marathe, H. Noltemeier, and S.S. Ravi, Modifying edges of a network to obtain short subgraphs, Theor. Comput. Sci. 203 (1998), no. 1, 91–121.
https://doi.org/10.1016/S0304-3975(97)00290-9
[13] D.R. Fulkerson and G.C. Harding, Maximizing the minimum source-sink path subject to a budget constraint, Math. Program. 13 (1977), no. 1, 116–118.
https://doi.org/10.1007/BF01584329
[16] P. Kouvelis and G. Yu, Robust Discrete Optimization and Its Applications, Springer Science & Business Media, 2013.
[17] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, Sequencing and scheduling: Algorithms and complexity, Logistics of Production and Inventory, Handbooks in Operations Research and Management Science, vol. 4, Elsevier, 1993, pp. 445–522.
https://doi.org/10.1016/S0927-0507(05)80189-6
[20] T.H.N. Nhan, K.T. Nguyen, and H. Nguyen-Thu, The minmax regret reverse 1-median problem on trees with uncertain vertex weights, Asia-Pac. J. Oper. Res. 40 (2023), no. 3, Article ID: 2250033.
https://doi.org/10.1142/S0217595922500336
[21] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer New York, 2012.