[1] T. Abualrub, N. Aydin, and P. Seneviratne, On -cyclic codes over , Australas. J. Combin 54 (2012), no. 2, 115–126.
[2] N. Aydin and T. Abualrub, A database of codes, J. Comb. Inf. Syst. Sci. 34 (2009), no. 1–4, 1–12.
[3] N. Aydin and T. Asamov, Online database of codes, http://quantumcodes.info/Z4 (2023).
[6] A.P.S. Bustomi and D. Suprijanto, Linear codes over the rings , IAENG Int. J. Comput. Sci. 48 (2021), no. 3, 686–696.
[7] A.R. Calderbank, A.R. Hammons Jr, P.V. Kumar, N.J.A. Sloane, and P. Solé, The -linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory 40 (1994), no. 2, 301–319.
https://doi.org/10.1109/18.312154
[9] J. Gao, Skew cyclic codes over , J. Appl. Math. Inform. 31 (2013), no. 3–4, 337–342.
[10] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
[11] Irwansyah, A. Barra, S.T. Dougherty, A. Muchlis, I. Muchtadi-Alamsyah, P. Solé, D. Suprijanto, and O. Yemen, -cyclic codes over , Int. J. Comput. Math.: Comput. Syst. Theory 1 (2016), no. 1, 14–31.
https://doi.org/10.1080/23799927.2016.1146800
[14] Irwansyah and D. Suprijanto, Linear codes over a general infinite family of rings and MacWilliams-type relations, Discrete Math. Lett. 11 (2023), 53–60.
https://doi.org/10.47443/dml.2022.091
[15] N. Kumar and A.K. Singh, Some classes of linear codes over and their applications to construct good and new -linear codes, Appl. Algebra Engin. Comm. Comput. 28 (2017), no. 2, 131–153.
https://doi.org/10.1007/s00200-016-0300-0
[17] S. Rosdiana, I. Muchtadi-Alamsyah, D. Suprijanto, and A. Barra, On linear codes over , IAENG Int. J. Appl. Math. 51 (2021), no. 1, 133–141.