Skew-cyclic and skew-quasi-cyclic codes over a general infinite family of rings

Document Type : Original paper

Authors

1 Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia

2 Center for Research Collaboration on Graph Theory and Combinatorics, Indonesia

3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Mataram, Indonesia

Abstract

We study structural properties of cyclic codes, and their generalization, over a general infinite family of rings, namely the ring Rk defined by R[v1,v2,,vk] with conditions vi2=vi, for i[1,k]\ZZ, where R is any finite commutative Frobenius ring. We derived necessary and sufficient condition for the codes to be cyclic, quasi-cyclic, skew-cyclic as well as to be quasi-skew-cyclic. As an application, we constructed optimal linear codes over \ZZ4 as a Gray images of our codes.

Keywords

Main Subjects


[1] T. Abualrub, N. Aydin, and P. Seneviratne, On θ-cyclic codes over F2+vF2, Australas. J. Combin 54 (2012), no. 2, 115–126.
[2] N. Aydin and T. Abualrub, A database of Z4 codes, J. Comb. Inf. Syst. Sci. 34 (2009), no. 1–4, 1–12.
[3] N. Aydin and T. Asamov, Online database of Z4 codes, http://quantumcodes.info/Z4 (2023).
[4] I.F. Blake, Codes over certain rings, Inf. Control 20 (1972), no. 4, 396–404. https://doi.org/10.1016/S0019-9958(72)90223-9
[5] I.F. Blake, Codes over integer residu rings, Inf. Control 29 (1975), 295–300. https://doi.org/10.1016/S0019-9958(75)80001-5
[6] A.P.S. Bustomi and D. Suprijanto, Linear codes over the rings Z4+uZ4+vZ4+wZ4+uvZ4+uwZ4+vwZ4+uvwZ4, IAENG Int. J. Comput. Sci. 48 (2021), no. 3, 686–696.
[7] A.R. Calderbank, A.R. Hammons Jr, P.V. Kumar, N.J.A. Sloane, and P. Solé, The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory 40 (1994), no. 2, 301–319. https://doi.org/10.1109/18.312154
[8] Y. Cengellenmis, A. Dertli, and S.T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr. 72 (2014), no. 3, 559–580.  https://doi.org/10.1007/s10623-012-9787-y
[9] J. Gao, Skew cyclic codes over Fp+vFp, J. Appl. Math. Inform. 31 (2013), no. 3–4, 337–342.
[10] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
[11] Irwansyah, A. Barra, S.T. Dougherty, A. Muchlis, I. Muchtadi-Alamsyah, P. Solé, D. Suprijanto, and O. Yemen, ΘS-cyclic codes over Ak, Int. J. Comput. Math.: Comput. Syst. Theory 1 (2016), no. 1, 14–31. https://doi.org/10.1080/23799927.2016.1146800
[12] Irwansyah, A. Barra, I. Muchtadi-Alamsyah, A. Muchlis, and D. Suprijanto, Skew-cyclic codes over Bk, J. Appl. Math. Comput. 57 (2018), no. 1, 69–84.   https://doi.org/10.1007/s12190-017-1095-2
[13] Irwansyah and D. Suprijanto, Structure of linear codes over the ring Bk, J. Appl. Math. Comput. 58 (2018), no. 1, 755–775.  https://doi.org/10.1007/s12190-018-1165-0
[14] Irwansyah and D. Suprijanto, Linear codes over a general infinite family of rings and MacWilliams-type relations, Discrete Math. Lett. 11 (2023), 53–60.  https://doi.org/10.47443/dml.2022.091
[15] N. Kumar and A.K. Singh, Some classes of linear codes over Z4+vZ4 and their applications to construct good and new Z4-linear codes, Appl. Algebra Engin. Comm. Comput. 28 (2017), no. 2, 131–153.  https://doi.org/10.1007/s00200-016-0300-0
[16] I. Muchtadi, A. Muchlis, A. Barra, and D. Supriyanto, Codes over infinite family of algebras, J. Algebra Combin. Discrete Struct. Appl. 4 (2016), no. 2, 131–140.  http://dx.doi.org/10.13069/jacodesmath.284947
[17] S. Rosdiana, I. Muchtadi-Alamsyah, D. Suprijanto, and A. Barra, On linear codes over Z2m+vZ2m, IAENG Int. J. Appl. Math. 51 (2021), no. 1, 133–141.
[18] E. Spiegel, Codes over Zm, Inf. Control 35 (1977), no. 1, 48–51. https://doi.org/10.1016/S0019-9958(77)90526-5
[19] E. Spiegel, Codes over Zm, revisited, Inf. Control 37 (1978), no. 1, 100–104. https://doi.org/10.1016/S0019-9958(78)90461-8