[1] A.A. Aghdash, N. Jafari Rad, and B.V. Fasaghandisi, On the restrained domination stability in graphs, RAIRO Oper. Res. 59 (2025), no. 1, 579–586.
https://doi.org/10.1051/ro/2024233
[4] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer International Publishing, Cham, 2020, pp. 365–409.
[5] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020), 141–171.
[7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, The Roman domatic problem in graphs and digraphs: A survey, Discuss. Math. Graph Theory 42 (2022), no. 3, 861–891.
[8] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, and L. Volkmann, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer International Publishing, Cham,
2021, pp. 273–307.
[12] G. Hao, Z. Xie, S.M. Sheikholeslami, and M. Hajjari, Bounds on the total double Roman domination number of graphs, Discuss. Math. Graph Theory 43 (2023), no. 4, 1033–1061.
https://doi.org/10.7151/dmgt.2417
[15] S.M. Sheikholeslami, M. Esmaeili, and L. Volkmann, Outer independent double Roman domination stability in graphs, Ars Combin. 160 (2024), 21–29.
http://dx.doi.org/10.61091/ars-160-04
[16] I. Stewart, Defend the Roman empire!, Sci. Am. 281 (1999), no. 6, 136–138.