General Randić index of unicyclic graphs with given maximum degree

Document Type : Original paper

Authors

Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa

Abstract

The general Randi'{c} index of a graph G is defined as Ra(G)=uvE(G)[dG(u)dG(v)]a, where aR, E(G) is the set of edges of G, and dG(u) and dG(v) are the degrees of vertices u and v, respectively. Among unicyclic graphs with given number of vertices and maximum degree, we present the graph with the largest value of Ra for a<0, and graphs having the smallest values of Ra for a>0.

Keywords

Main Subjects


[1] M.R. Alfuraidan, K.C. Das, T. VetrÍk, and S. Balachandran, General Randić index of unicyclic graphs with given diameter, Discrete Appl. Math. 306 (2022), 7–16.  https://doi.org/10.1016/j.dam.2021.09.016
[2] A. Ali and T. Idrees, A note on polyomino chains with extremum general sum-connectivity index, Commun. Comb. Optim. 6 (2021), no. 1, 81–91.  https://doi.org/10.22049/cco.2020.26866.1153
[3] A. Altassan and M. Imran, General Randić index of unicyclic graphs and its applications to drugs, Symmetry 16 (2024), no. 1, Article ID: 113.  https://doi.org/10.3390/sym16010113
[4] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998),  225–233.
[5] D. Chen, Study of unicyclic graph with maximal general Randić index Rα for α<0, Intelligent Computing and Information Science (Berlin, Heidelberg) (R. Chen, ed.), Springer Berlin Heidelberg, 2011, pp. 136–141.
[6] R. Hasni, N.H. Md Husin, and Z. Du, Unicyclic graphs with maximum Randić indices, Commun. Comb. Optim. 8 (2023), no. 1, 161–172.  https://doi.org/10.22049/cco.2021.27230.1216
[7] X. Li, Y. Shi, and T. Xu, Unicyclic graphs with maximum general Randić index for α<0, MATCH Commun. Math. Comput. Chem. 56 (2006), no. 3, 557–570.
[8] X. Li, L. Wang, and Y. Zhang, Complete solution for unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 55 (2006),  no. 2, 391–408.
[9] E. Swartz and T. Vetrík, General sum-connectivity index and general Randić index of trees with given maximum degree, Discret. Math. Lett. 12 (2023), 181–188.  https://doi.org/10.47443/dml.2023.140
[10] E. Swartz and T. Vetrík, General sum-connectivity index of unicyclic graphs with given maximum degree, Discrete Appl. Math. 366 (2025), 238–249.  https://doi.org/10.1016/j.dam.2025.01.033
[11] T. Vetrík and M. Masre, General eccentric connectivity index of trees and unicyclic graphs, Discrete Appl. Math. 284 (2020), 301–315.  https://doi.org/10.1016/j.dam.2020.03.051
[12] B. Wu and L. Zhang, Unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 2, 455–464.